Browse > Article
http://dx.doi.org/10.5658/WOOD.2017.45.1.72

Relationships Between Vessel-lumen-area Time Series of Quercus spp. at Mt. Songni and Corresponding Climatic Factors  

Jeong, Hyun-Min (Tree-ring Material Bank, Chungbuk National University,)
Kim, Yo-Jung (Tree-ring Material Bank, Chungbuk National University,)
Seo, Jeong-Wook (Department of Wood & Paper Science, College of Agriculture, Life and Environment Science, Chungbuk National University)
Publication Information
Journal of the Korean Wood Science and Technology / v.45, no.1, 2017 , pp. 72-84 More about this Journal
Abstract
This study aimed to suggest a method to establish vessel-lumen-area chronologies in domestic Quercus spp. from Mt. Songni and to verify their potential as a climate proxy. In order to establish vessel-lumen-area chronologies, three options were applied to filter vessels. Options 1 and 2 use vessels having lumina larger than or equal to $6,000{\mu}m^2$ (MVA-60) and $7,500{\mu}m^2$ (MVA-75), respectively, to establish the chronologies by their mean values in each year, and option 3 uses the largest one (MAX) in each tree ring. MVA-60 and MVA-75 had mostly significant relationships with the winter precipitation between November in the previous year and January in the current year, however, MAX had only significant relationship with November precipitation in the previous year. Based on these results, it was verified that the potential of vessel lumina in domestic Quercus spp. could be a climate proxy in dendroclimatology.
Keywords
vessel lumen area; tree ring; climate change; climate proxy; oak;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Abrantes, J., Campelo, F., Garcia-Gonzalez, I., Nabais, C. 2013. Environmental control of vessel traits in Quercus ilex under Mediterranean climate: relating xylem anatomy to function. Trees-Structure and Function 27: 655-662.   DOI
2 Alla, A.Q., Camarero, J.J. 2012. Contrasting responses of radial growth and wood anatomy to climate in a Mediterranean ring-porous oak: implications for its future persistence or why the variance matters more than the mean. European Journal of Forest Research 131(5): 1537-1550.   DOI
3 Baillie, M.G.L., Pilcher, J.R. 1973. A simple cross-dating program for tree-ring research. Tree Ring Bulletin 33: 7-14.
4 Briffa, K.R., Jones, P.D., Pilcher, J.R., Hughes, M.K.. 1988. Reconstructing summer temperatures in northern Fennoscandinavia back to A.D. 1700 using tree-ring data from Scots pine. Arctic and Alpine Research 20(4): 385-394.   DOI
5 Briffa, K., Jones, P.D. 1990. Basic chronology statistics and assessment. In Method of Dendrochronology (eds. Cook, ER and Kairiukstis L.A.), Kluwer Academic Publishers, Dordrecht, 137-152.
6 Eckstein, D., Bauch, J. 1969. Beitrag zur Rationalisierung eines dendrochro-nologischen Verfahrens und zur Analyse seiner Aussagesicherheit. Forstwissenschaftliches Centralblatt 88: 230-250.   DOI
7 Buntgen, U., Tegel, U., Nicoluss, K., McCormick, M., Frank, D., Kaplan, J.O., Herzig, F., Heussner, K.-U., Wanner, H., Luterbacher, J., Esper, J.. 2011. 2500 years of european climate variability and human susceptibility. Science 331(6017): 578-582.   DOI
8 Corcuera, L., Camarero, J.J., Siso, S., Gil-Pelegrin, E. 2006. Radial-growth and wood-anatomical changes in overaged Quercus pyrenaica coppice stands: functional responses in a new Mediterranean landscape. Trees 20(1): 91-98.   DOI
9 Deslauriers, A., Morin, H. 2005. Intra-annual tracheid production in balsam fir stems and the effect of meteorological variables. Tees 19: 402-408.
10 Eilmann, B., Weber, P., Rigling, A., Eckstein, D. 2006. Growth reactions of Pinus sylvestris L. and Quercus pubescens Willd. to drought years at a xeric site in Valais, Switzerland. Dendrochronologia 23(3): 121-132.   DOI
11 Fan, Z.X., Brauning, A., Yang, B., Gao, K.F. 2009. Tree ring density-based summer temperature reconstruction for the central Hengduan Mountains in southern China. Global and Planetary Change 65(1-2): 1-11.   DOI
12 Fonti, P., Garcia-Gonzalez, I. 2004. Suitability of chestnut earlywood vessel chronologies for ecological studies. New Phytologist 163(1): 77-86.   DOI
13 Fonti, P., Heller, O., Cherubini, P., Rigling, A., Arend, M. 2013. Wood anatomical responses of oak saplings exposed to air warming and soil drought. Plant Biology 15: 210-219.
14 Fonti, P., Garcia-Gonzalez, I. 2008. Earlywood vessel size of oak as a potential proxy for spring precipitation in mesic sites. Journal of Biogeography 35(12): 2249-2257.   DOI
15 Fonti, P., Eilmann, B., Garcia-Gonzalez, I., von Arx, G. 2009. Expeditious building of ring-porous earlywood vessel chronologies without loosing signal information. Trees 23: 665-671.   DOI
16 Fonti, P, von Arx, G., Garcia-Gonzalez, I., Eilmann, B., Sass-Klaassen, U., Gärtner, H., Eckstein, D. 2010. Studying global change through investigation of the plastic responses of xylem anatomy in tree rings. New Phytologist 185: 42-53.   DOI
17 Fritts, H.C. 1976. Tree Rings and Climate. Academic Press. London. 567 pp.
18 Gagen, M., Zorita, E., McCarroll, D., Young, G.H., Grudd, H., Jalkanen, R., Loader, N.J., Robertson, I., Kirchhefer A. 2011. Cloud response to summer temperatures in Fennoscandia over the last thousand years. Geophysical Research Letters 38(5): L05701, DOI 10.1029/2010GL046216.   DOI
19 Garcia-Gonzalez, I., Fonti, P. 2008. Ensuring a representative sample of earlywood vessels for dendroecological studies: an example from two ring-porous species. Trees-Structure and Function 22: 237-244.   DOI
20 Gartner, H., Cherubini, P., Fonti, P., von Arx, G., Schneider, L., Nievergelt D., Verstege, A., Bast, A., Schweingruber, F.H., Buntgen, U. 2015. A technical perspective in modern tree-ring research - how to overcome dendroecological and wood anatomical challenges. Journal of visualized Experiments 5(97).
21 Gonzalez-Gonzalez, B., Rozas, V., Garcia-Gonzalez, I. 2014. Earlywood vessels of the sub-Mediterranean oak Quercus pyrenaica have greater plasticity and sensitivity than those of the temperate Q. petraea at the Atlantic-Mediterranean boundary. Trees-Structure and Function 24: 237-252.
22 Grudd, H., Briffa, K.R., Karlén, W., Bartholin, T.S., Jones, P.D., Kromer, B. 2002. A 7400-year tree-ring chronology in northern Swedish Lapland: natural climatic variability expressed on annual to millennial time scales. The Holocene 12(6): 657-665.   DOI
23 Matisons, R., Brumelis, G. 2012. Influence of climate on tree-ring and earlywood vessel formation in Quercus robur in Latvia. Trees-Structure and Function 26: 1251-1266.   DOI
24 Grudd, H. 2008. Tornetrask tree-ring width and density AD 500-2044: a test of climatic sensitivity and a new 1500-year reconstruction of north Fennoscandian summers. Climate Dynamics 31: 843-857.   DOI
25 Hardy, J.P., Groffman, P.M., Fitzhugh, R.D., Henry, K.S., Welman, A.T., Demers, J.D., Fahey, T.J., Driscoll, C.T., Tierney, G.L., Nolan, S. 2001. Snow depth manipulation and its influence on soil frost and water dynamics in a northern hardwood forest. Biogeochemistry 56: 151-174.   DOI
26 Kniesel, B. M., Gunther, B., Roloff, A., von Arx, G. 2015. Defining ecologically relevant vessel parameters in Quercus robur L. for use in dendroecology: a pointer year and recovery time case study in Central Germany. Trees - Structure and Function 29(4): 1041-1051.   DOI
27 Korea Forest Service. 2016. Statistical yearbook of forestry. Vol. 46.
28 Kwon, S.M., Kim, N.H. 2005. Annual ring formation of major wood species growing in Chuncheon, Korea(1) - the period of cambium activity -. Journal of the Korean Wood Sciences and Technology. 33(4): 1-8.
29 McCarroll, D., Loader, N.J. 2004. Stable isotopes in tree rings. Quaternary Science Reviews 23(7-8): 771-801.   DOI
30 National Institute of Forest Science, 2013, Estimation of greenhouse gas emissions of korean major timbers using life cycle assessment.
31 Park, W.-K., Seo, J.-W. 2000. Reconstruction of May-June precipitation (253 years: A.D. 1746-1998) in east-coastal region (Yungdong) of Korea from tree rings of Pinus densiflora S. et Z. The Korean Journal of Quaternary Research 14: 87-99.
32 Speer, J.H. 2010. Fundamentals of Tree-Ring Research. The University of Arizona Press. USA.
33 Sass, U., Eckstein, D. 1995. The variability of vessel size in beech (Fagus sylvatica L.) and its ecophysiological interpretation. Trees-Structure and Function 9(5): 247-252.
34 Sass, U., Sabajo, C.R., Ouden, J. 2011. Vessel formation in relation to leaf phenology in pedunclulate oak and European ash. Dendrochronologia 29: 171-175.   DOI
35 Seo, J.-W., Eckstein, D., Schmitt, U. 2007. The pinning method: from pinning to data preparation. Dendrochronologia 25: 79-86.   DOI
36 Garcia-Gonzalez, I., Eckstein, D. 2003. Climatic signal of earlywood vessels of oak on a maritime site. Tree Physiology 23(7): 497-504.   DOI
37 Repo, T., Mononen, K., Alvila, L., Pakkanen, T.T., Hanninen, H. 2008. Cold acclimation of pedunculate oak (Quercus robur L.) at its northernmost distribution range. Environmental and Experimental Botany 63: 59-70.   DOI
38 Um, T.W., Chun, J.H., Kim, K.H. 2009. Stand structure characteristics of oak wilt infected forest, Korea. Korean Journal of Environment and Ecology 23(2): 220-232.
39 Woodcock, D.W. 1989. Climate sensitivity of wood-anatomical features in a ring-porous oak (Quercus macrocarpa). Canadian Journal of Forest Research 19: 639-644.   DOI