Browse > Article
http://dx.doi.org/10.5658/WOOD.2014.42.4.483

Effect of pMDI as Coupling Agent on The Properties of Microfibrillated Cellulose-reinforced PBS Nanocomposite  

Jang, Jae-Hyuk (College of Forest & Environmental Sciences, Kangwon National University)
Lee, Seung-Hwan (College of Forest & Environmental Sciences, Kangwon National University)
Kim, Nam-Hun (College of Forest & Environmental Sciences, Kangwon National University)
Publication Information
Journal of the Korean Wood Science and Technology / v.42, no.4, 2014 , pp. 483-490 More about this Journal
Abstract
The effect of microfibrillated cellulose (MFC) content and coupling agent (polymeric methylene diphenyl diisocyanate, pMDI) on the properties of MFC-reinforced polybutylene succinate (PBS) nanocomposite. With increasing MFC content, tensile strength and elastic modulus were increased. More than 1.5 times in tensile strength of PBS/MFC(70/30) nanocomposite was improved by the addition of pMDI (1 phr), compared to the nanocomposite without pMDI. This trend was being significant in nanocomposite with higher MFC content. Thermal stability of the nanocomposite was increased by the addition of pMDI. These improvements is considered to be due to the improvement of MFC dispersion and interfacial adhesion between MFC and PBS matrix.
Keywords
microfibrillated cellulose; cellulose nanofiber; nanocellulose; polybutylene succiante; polymeric MDI; coupling agent; nanocomposite;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Fujimaki, T. 1998. Processability and properties of aliphatic polyesters, 'BIONOLLE', synthesized by polycondensation reaction. Polymer Degradation and Stability. 59: 209-214.   DOI   ScienceOn
2 Calabia, B.P., Ninomiya, F., Yagi, H., Oishi, A., Taguchi, K., Kunioka, M., Funabashi, M. 2013. Biodegradable poly(butylene succinate) composites reinforced by cotton fiber with silane coupling agent. Polymers. 5: 128-141.   DOI
3 Cho, M.J., Park, B.D. 2010. Current research on nanocellulose-reinforced nanocomposites. Journal of the Korean Wood Science and Technology 38(6): 587-601.   과학기술학회마을   DOI   ScienceOn
4 Eichhorn, S., Dufresne, A., Aranguren, M., Marcovich, N., Capadona, J., Rowan, S., Weder, C., Thielemans, W., Roman, M., Renneckar, S., Gindl, W., Veigel, S., Keckes, J., Yano, H., Abe, K., Nogi, M., Nakagaito, A.N., Mangalam, A., Simonsen, J., Benight, A., Bismarck, A., Berglund L., Peijs, T. 2010. Review: current international research into cellulose nanofibres and nanocomposites. Journal of Matererials Science. 45: 1-33.   DOI   ScienceOn
5 Greenburg, M.M., 1998. Toxicological review of methylene diphenyl diisocyanate (MDI). U.S. Environmental Protection Agency. Washington, DC, USA. p. 2.
6 Lavoine, N., Desloges, I., Dufresne, A., Bras, J. 2012. Microfibrillated cellulose - Its barrier properties and applications in cellulosic materials:A review. Carbohydrate. Polymers. 90: 735-764.
7 Lee, S.H., Wang, S. 2006. Biodegradable polymers/bamboo fiber biocomposite with bio-based coupling agent. Composite Part A: Applied Science and Manufacturing. 37: 80-91.   DOI   ScienceOn
8 Lee, S.Y., Chun, S.J., Doh, G.H., Lee, S., Kim, B.H., Min, K.S., Kim, S.C., Huh, Y.S. 2011. Preparation of cellulose nanofibrils and their applications: High strength nanopapers and polymer composite films. Journal of the Korean Wood Science and Technology. 39(3): 197-205.   과학기술학회마을   DOI
9 Lee, S.H., Teramoto, Y., Endo, T. 2011. Cellulose nanofiber-reinforced polycaprolactone/polypropylene hybrid nanocomposite. Composite Part A:Applied Science and Manufacturing. 42: 151-156.   DOI   ScienceOn
10 Liu, D., Sun, S., Tian, H., Maiti S., Ma Z. 2013. Effects of cellulose nanofibrils on the structure and properties on PVA nanocomposites. Cellulose. 20(6): 2981-2989.   DOI   ScienceOn
11 Moteki, Y., Fujiwara, N., Furuichi, Y., Takiyama, E. Polyester laminates. US Patent No. 5360663, 1994.
12 Wang, H., Sun, X., Seib, P. 2001. Strengthening blends of poly(lactic acid) and starch with methylenediphenyl diisocyanate. Journal of Applied Polymer Science. 82: 1761-1767.   DOI   ScienceOn
13 Nakagaito, A.N., Fujimura, A., Sakai, T., Hama, Y., Yano, H. 2009. Production of microfibrillated cellulose (MFC)-reinforced polylactic acid (PLA) nanocomposites from sheets obtained by a papermaking-like process. Composites Science and Technology. 69: 1293-1297.   DOI   ScienceOn
14 Ohkita, T., Lee, S.H. 2005. Bamboo fiber (BF)-filled poly(butylenes succinate) bio-composite -Effect of BF-e-MA on the properties and crystallization kinetics-. Holzforschung. 58(5): 537-543.
15 Ohkita, T., Lee, S.H. 2006. Thermal degradation and biodegradability of poly(latic acid)/corn starch biocomposites. Journal of Applied Polymer Science. 100: 3009-3017.   DOI   ScienceOn
16 Yoo, E.S., Im, S.S. 1999. Melting Behavior of Poly(butylene succinate) during Heating Scan by DSC. Journal of Polymer Science Part B: Polymer Physics. 37: 1357-1366.
17 Yasuda, Y., Takiyama, E. Polyester injection-molded articles. US Patent No. 5391644, 1995.
18 Ichikawa, Y., Kondo, H., Igarashi, Y., Noguchi, K., Okuyama. K., Washiyama, J. 2000. Polymer. 41: 4719-4727.   DOI   ScienceOn
19 Imaizumi, M., Kotani, M., Kondo, H., Iwasa, T., Takiyama, E. Polyester sheet. US Patent No. 5314969, 1994.
20 Imaizumi, M., Kotani, M., Kamei, R., Takiyama, E. Stretched blow molding articles. US Patent No. 5658627, 1997.
21 Paakko, M., Ankerfors, M., Kosonen, H., Nykanen, A., Ahola, S., Osterberg, M., Ruokolainen, J., Laine, J., Larsson, P.T., Ikkala, O., Lindstrom, T. 2007. Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules. 8: 1934-1941.   DOI   ScienceOn
22 Jang, J.H., Kwon, G.J., Kim, J.H., Kwon, S.M., Yoon, S.L., Kim, N.H. 2012. Preparation of cellulose nanofiber from domestic plantation resources. Journal of the Korean Wood Science and Technology. 40(3): 156-163.   DOI   ScienceOn
23 Jang, J.H., Lee, S.H., Endo, T., Kim, N.H. 2013. Characteristics of microfibrillated cellulosic fibers and paper sheets from Korean white pine. Wood Science and Technology. 47: 925-937.   DOI   ScienceOn
24 Kalia, S., Kaith, B.S., Kaur, I. 2010. Cellulose Fibers: Bio- and Nano- Polymer composites -Green chemistry and technology-. Springer-Verlag. Berlin, Heidelberg, Germany. pp. 426-427.
25 Rozman, H.D., Tan, K.W., Kumar R.N., Abubakar, A. 2001. Soy protein isolate/kraft lignin composites compatibilized with methylene diphenyl diisocyanate. Journal of Applied Polymer Science. 81(6): 1333-1340.   DOI   ScienceOn
26 Saito, T., Kimura, S., Nishiyama, Y., Isogai, A. 2007. Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecule. 8: 2485-2491.   DOI   ScienceOn
27 Siqueira, G., Bras, J., Dufresne, A. 2010. Cellulosic bionanocomposites: A review of preparation, properties and applications. Polymers. 2: 728-765.   DOI
28 Taka, T., Yasukawa, Y., Takiyama, E. Polyester film. US Patent No. 5324794, 1994.
29 Tokiwa, Y., Calabia, B.P. 2007. Biodegradability and biodegradation of polyesters. Journal of Polymers and the Environment. 15: 259-267.   DOI
30 Takahasi, T., Kamei, R., Terazono, S., Takahasi, T., Nakamura, A., Takiyama, E., Polyester tying tape-like materials. US Patent No. 5310872, 1994.
31 Kim, M.J., Kim, J.H., Park, S.Y. 2011. The dyeability of the heat resistant and biodegradable polyester with the variation of dyeing temperature. Annual Meeting of the Korean Society of Dyers and Finishers. Proceeding. p. 85.
32 Wang, X., Zhou, J., Li, L. 2007. Multiple melting behavior of poly (butylene succinate). European Polymer Journal. 43: 3163-3170.   DOI   ScienceOn