Browse > Article
http://dx.doi.org/10.5658/WOOD.2014.42.2.149

A New α-Amylase from Reticulitermes speratus KMT1  

Park, Han-Saem (Department of Forest Products and Biotechnology, College of Forest Science, Kookmin University)
Ham, Youngseok (Department of Forest Products and Biotechnology, College of Forest Science, Kookmin University)
Ahn, Hee-Hoon (Department of Forest Products and Biotechnology, College of Forest Science, Kookmin University)
Shin, Keum (Department of Forest Products and Biotechnology, College of Forest Science, Kookmin University)
Kim, Yeong-Suk (Department of Forest Products and Biotechnology, College of Forest Science, Kookmin University)
Kim, Tae-Jong (Department of Forest Products and Biotechnology, College of Forest Science, Kookmin University)
Publication Information
Journal of the Korean Wood Science and Technology / v.42, no.2, 2014 , pp. 149-156 More about this Journal
Abstract
Termites are wood pests that cause vast economic damage every year. They digest both cellulose and starch, but the enzymes for starch digestion have not been well characterized. We obtained complete amino acid sequence information on the KME1 ${\alpha}$-amylase from Reticulitermes speratus KMT1 through analysis of total mRNA sequences. The KME1 enzyme has two ${\alpha}$-amylase domains and is 68% identical to the ${\alpha}$-amylase from Blattellager manica, its closest relative in the GenBank database. Some unique features of its conserved region and its distant evolutionary relationship to other insect ${\alpha}$-amylases suggest that KME1 is a new type of ${\alpha}$-amylase.
Keywords
Termite; Reticulitermes speratus KMT1; ${\alpha}$-amylase; Homologous search; Phylogenetic analysis;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Janecek, S. 2002. How many conserved se quence regions are there in the $\alpha$-amylase family? Biologia 57: 29-41.
2 Cho, M.-J., Y.-H. Kim, K. Shin, Y.-K. Kim, Y.-S. Kim, and T.-J. Kim. 2010. Symbiotic adaptation of bacteria in the gut of Reticulitermes speratus: Low endo-$\beta$-1,4-glucanase activity. Biochem. Bioph. Res. Comm. 395: 432-435.   DOI   ScienceOn
3 Cho, M. J., K. Shin, Y.-K. Kim, Y.-S. Kim, and T.-J. Kim. 2010. Phylogenetic analysis of Reticulitermes speratus using the mitochondrial cytochrome C oxidase subunit I gene. J. Korean Wood Sci. & Tech. 38: 135-139.   과학기술학회마을   DOI   ScienceOn
4 Franco, O. L., D. J. Rigden, F. R. Melo, and M. F. Grossi-de-Sa. 2002. Plant $\alpha$- amylase inhibitors and their interaction with insect $\alpha$-amylases. Eur. J. Biochem. 269: 397-412.   DOI   ScienceOn
5 Janecek, S. 1997. $\alpha$-amylase family: Molecular biology and evolution. Prog. Biophys. Mol. Bio. 67: 67-97.   DOI   ScienceOn
6 Kanai, K., J. I. Azuma, and K. Nishimoto. 2008. Studies on digestive system of termites : I. Digestion of carbohydrates by termite Coptotermes formosanus Shiraki. Wood Res. 68: 47-57.
7 MacGregor, E. A., S. Janecek, and B. Svensson. 2001. Relationship of sequence and structure to specificity in the $\alpha$-amylase family of enzymes. BBA-Protein Struct. M. 1546: 1-20.   DOI   ScienceOn
8 Marchler-Bauer, A., S. Lu, J. B. Anderson, F. Chitsaz, M. K. Derbyshire, C. DeWeese- Scott, et al. 2011. CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res. 39: D225- D229.   DOI
9 Matsuura, Y., M. Kusunoki, W. Harada, and M. Kakudo. 1984. Structure and possible catalytic residues of Taka-amylase A. J. Biochem. 95: 697-702.   DOI
10 Nakajima, R., T. Imanaka, and S. Aiba. 1986. Comparison of amino acid sequences of eleven different $\alpha$-amylases. Appl. Microbiol. Biot. 23: 355-360.
11 Sharma, P., P. R. Shankar, G. Subramaniam, A. Kumar, A. Tandon, C. G. Suresh, et al. 2010. Cloning and sequence analysis of the amylase gene from the rice pest scirpophaga incertulas walker and its inhibitor from wheat (variety MP sehore). Int. J. Insect Sci. 1: 29-44.
12 Nakashima, K., H. Watanabe, H. Saitoh, G. Tokuda, and J. I. Azuma. 2002. Dual cellulose- digesting system of the wood-feeding termite, Coptotermes formosanus Shiraki. Insect Biochem. Molec. 32: 777-784.   DOI   ScienceOn
13 Nater, U.M., and N. Rohleder. 2009. Salivary alpha-amylase as a non-invasive biomarker for the sympathetic nervous system: Current state of research. Psychoneuroendocrinology 34: 486-496.   DOI   ScienceOn
14 Saltzmann, K. D., K. A. Saltzmann, J. J. Neal, M. E. Scharf, and G. W. Bennett. 2006. Characterization of BGTG-1, a tergal gland-secreted alpha-amylase, from the German cockroach, Blattella germanica (L.). Insect Mol. Biol 15: 425-433.   DOI   ScienceOn
15 Svensson, B., M. Tovborg Jensen, H. Mori, K. Sass Bak-Jensen, B. Bønsager, P. K. Nielsen, et al. 2002. Fascinating facets of function and structure of amylolytic enzymes of glycoside hydrolase family 13. Biologia 57: 5-19.
16 Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596- 1599.   DOI   ScienceOn
17 Zhou, X., J. A. Smith, F. M. Oi, P. G. Koehler, G. W. Bennett, and M. E. Scharf. 2007. Correlation of cellulase gene expression and cellulolytic activity throughout the gut of the termite Reticulitermes flavipes. Gene 395: 29-39.   DOI   ScienceOn
18 Watanabe, H., M. Nakamura, G. Tokuda, I. Yamaoka, A. M. Scrivener, and H. Noda. 1997. Site of secretion and properties of endogenous endo-$\beta$-1,4-glucanase components from Reticulitermes speratus (Kolbe), a Japanese subterranean termite. Insect Biochem. Mol. Biol. 27: 305-313.   DOI   ScienceOn