Browse > Article
http://dx.doi.org/10.5658/WOOD.2011.39.4.351

Fractography of Sound and Tension Woods of Quercus mongolica by Shear and Bending Stress  

Kwon, Sung-Min (College of Forest & Environmental Sciences, Kangwon National University)
Kwon, Gu-Joong (College of Forest & Environmental Sciences, Kangwon National University)
Jang, Jae-Hyuk (College of Forest & Environmental Sciences, Kangwon National University)
Kim, Nam-Hun (College of Forest & Environmental Sciences, Kangwon National University)
Publication Information
Journal of the Korean Wood Science and Technology / v.39, no.4, 2011 , pp. 351-358 More about this Journal
Abstract
This study has been carried out to understand the fracture characteristics of the tension wood of Quercus mongolica under the shear and bending stress. Macroscopically, the wood fluff in the shear surface appeared more frequently in tension wood than sound wood, and more coarse wood fluffs were observed in 30% than 10% moistured shear surface. In the fractured tension wood from bending stress, more thick and long wood fiber appeared than sound wood. The observation using scanning electron microscope indicated that both sound and tension wood samples from radial shear surface showed the intrawall dominated failure and the fracture surface of the ray parenchyma cell showed the transwall dominated failure. In tangential shear surface, wood fiber surface showed the intrawall failure and short and coarse wood fiber was observed in tension wood. Ray parenchyma cell of sound and tension wood samples showed the transwall failure. The surfaces of tension wood’s ray parenchyma cell were relatively clean. The fractured tension wood from bending stress showed unsharp and flat wood fiber compared with sound wood.
Keywords
fractography; tension wood; intercell failure; intrawall failure; transwall failure;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Panshin, A. J. and C. de Zeeuw. 1980. Textbook of wood technology -structure, identification, properties, and uses of the commercial woods of the United States and Canada. McGraw-Hill in New York.
2 Quinn, J. B. and G. D. Quinn. 2010. Material properties and fractography of an indirect dental resin composite. Dental Materials 26(6): 589-599.   DOI   ScienceOn
3 Ruelle, J., J. Beauchêne, H. Yamamoto, and B. Thibaut. 2011. Variations in physical and mechanical properties between tension and opposite wood from three tropical rainforest species. Wood Science and Technology. 45(2): 339-357.   DOI
4 Sell, J. and T. Zimmermann. 1993. Radial fibril agglomerations of the S2 on transverse-fracture surfaces of tracheids of tension-loaded spruce and white fir. European Journal of Wood and Wood Products 51(6): 384.   DOI
5 Tarpani, J. R., C. O. F. T. Ruckert, M. T. Milan, R. V. Silva, A. Rosato Jr., R. N. Pereira, W. W. Bose, and D. Spinelli. 2004. Estimating fatigue life under variable amplitude loading through quantitative fractography. Engineering Failure Analysis 11(4): 547-559.   DOI   ScienceOn
6 Teh, S. F., T. Liu, L. Wang, and C. He. 2005. Fracture behaviour of poly(ethylene terephthalate) fiber toughened epoxy composites. Composites Part A: Applied Science and Manufacturing 36(8): 1167-1173.   DOI   ScienceOn
7 Diaz-vaz, J. E., R. A. Ananias, S. Rodriguez, M. Torres, A. Fernandez, and H. Poblete, 2009. Compression wood in Pinus radiata II: Density and chemical composition. Maderas. Ciencia y tecnología 11(2): 139-151.
8 Donaldson, L. A. 1995. Cell wall fracture properties in relation to lignin distribution and cell dimensions among three genetic groups of radiata pine. Wood Science and Technology 29(1): 51-63.   DOI   ScienceOn
9 George, T. 1991. Science and Technology of Wood: Structure, Properties, Utilization. Tsoumis Van Nostrand Reinhold. p. 93-96.
10 Harish, S., D. P. Michael, A. Bensely, D. M. Lal, and A. Rajadurai. 2009. Mechanical property evaluation of natural fiber coir composite. Materials Characterization 60(1): 44-49.   DOI   ScienceOn
11 Kaku, T., S. Serada, K. Baba, F. Tanaka, and T. Hayashi. 2009. Proteomic analysis of the G-layer in poplar tension wood. Journal of Wood Science 55(4): 250-257.   DOI
12 Kifetew, G., F. Thuvander, L. Berglund, and H. Lindberg. 1998. The effect of drying on wood fracture surfaces from specimens loaded in wet condition. Wood Science and Technology 32(2): 83-94.   DOI
13 Kim, N. H., T. Okano, and M. Ohta. 1988. Fractography of drying checks. Bulletin of the Tokyo University Forests. 78: 83-95.
14 Lehringer, C., G. Daniel, and U. Schmitt. 2009. TEM/FE-SEM studies on tension wood fibres of Acer spp., Fagus sylvatica L. and Quercus robur L. Wood Science and Technology 43(7-8): 691-702.   DOI
15 Michalska, J., S. Maria, and M. Hetmańczyk. 2009. Application of quantitative fractography in the assessment of hydrogen damage of duplex stainless steel. Materials Characterization 60(10): 1100-1106.   DOI   ScienceOn
16 Ando, K., Y. Hirashima, M. Sugihara, S. Hirao, and Y. Sasaki. 2006. Microscopic processes of shearing fracture of old wood, examined using the acoustic emission technique. Journal of Wood Science 52: 483-489.   DOI
17 김남훈, 堤 壽一, 홍순일, 이성재. 1999. 구조용 목질재료의 전단파괴기구 해명을 위한 파면해석적 연구. 한국가구학회지 10(1): 23-32.   과학기술학회마을
18 한국산업규격. 2010. KS F 2208, KS F 2209.
19 홍병화, 변희섭. 1995. 소나무 압축응력재의 동 탄성율과 내부마찰. 목재공학 32(2): 32-36.
20 Carlquist, S. 1988. Comparative wood anatomy Systematic, Ecological, and Evolutionary Aspects of Dicotyledon Wood. Springer. p. 144.
21 Cote, W. A., A. C. Day, and T. E. Timell. 1969. A contribution to the ultrastructure of tension wood fibers. Wood science and Technology 3(4): 257-271.   DOI
22 Cote, W. A. and R. B. Hanna. 1983. Ultrastructural characteristics of wood fracture surfaces. Wood and Fiber Science 15(2): 135-163.
23 Cronshaw, J. and P. R. Morey. 1968. The effect of plant growth substances on the development of tension wood in horizontally inclined stems of Acer rubrum seedlings. Protoplasma 65(4): 379-391.   DOI
24 Yamamoto, H. 2004. Role of the gelatinous layer on the origin of the physical properties of the tension wood. Journal of Wood Science 50(3): 197-208.
25 Timell, T. E. 1986. Compression wood in Gymnosperns Vol. I. II. III. Springer-Verlog. Berlin.
26 Wilkes, J. 1987. Effect of moisture content on the morphology of longitudinal fracture in Eucalyptus maculata. IAWA Bulletin n. s. 8(2): 175-181.   DOI
27 Wise, L. M., Z. Wang, and M. D. Grynpas. 2007. The use of fractography to supplement analysis of bone mechanical properties in different strains of mice. Bone 41(4): 620-630.   DOI   ScienceOn
28 Nakanishi, Y., K. Hana, and H., Hamada. 1997. Fractography of fracture in CFRP under compressive load. Composites Science and Technology 57(8): 1139-1147.   DOI   ScienceOn
29 Nakai, T., N. Igushi, and K. Ando. 1998. Piezoelectric behavior of wood under combined compression and vibration stresses I: Relation between piezoelectric voltage and microscopic deformation of a Sitka spruce (Picea sitchensis Carr.) 44(1): 28-34.   DOI