Browse > Article

Quercetin Glycosides from Bark of Maple (Acer komarovii Pojark.)  

Kwon, Dong-Joo (Dept. of Wood Science & Engineering, College of Forest and Environmental Sciences, Kangwon National University)
Bae, Young-Soo (Dept. of Wood Science & Engineering, College of Forest and Environmental Sciences, Kangwon National University)
Publication Information
Journal of the Korean Wood Science and Technology / v.37, no.2, 2009 , pp. 171-176 More about this Journal
Abstract
The chemical constituents of Acer komarovii Pojark. which belongs to Aceraceae has never been reported. The bark of A. komarovii was extracted with 70% aqueous acetone, and the concentrated extract was successively partitioned with n-hexane, dichloromethane, ethyl acetate and $H_2O$. From the ethyl acetate soluble fraction, four compounds were isolated by the repeated Sephadex LH-20 and RP C-18 column chromatography. From the results of spectroscopic methods including FAB-MS, 1D and 2D NMR, the structures of the compounds were determined as quercetin (1), guaijaverin (2), hirsutrin (3) and hyperin (4). These compounds (1-4) have not been reported in this tree yet.
Keywords
Acer komarovii; quercetin; guaijaverin; hirsutrin; hyperin;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Morikawa, T., J. Tao, I. Toguchida, H. Matsuda, and M. Yoshikawa. 2003. Structures of new cyclic diarylheptanoids and inhibitors of nitric oxide production from Japanese folk medicine Acer nikoense. Journal of Natural Products 66(1): 86-91   DOI   ScienceOn
2 Yang, H. K., S. H. Sung, and Y. C. Kim. 2005. Two new hepatoprotective stilbene glycosides from Acer mono leaves. Journal of Natural Products 68(1): 101-103   DOI   ScienceOn
3 Bate-Smith, E. C. 1978. Systematic aspects of the astringent tannins of Acer species. Phytochemistry 17(11): 1945-1948   DOI   ScienceOn
4 Schraml, J., V. Blechta, J. Sykora, L. Soukupova, P. Curinova, D. Pronek, and J. Lachman. 2005. Characterization of polyphenols from plant materials through their silylation and 29Si NMR spectroscopy- line assignment through 29Si,13C spinspin couplings. Magnetic Resonance in Chemistry 43(10): 829-834   DOI   ScienceOn
5 Schieber, A., P. Hilt, J. Conrad, U. Beifuss, and R. Carle. 2002. Elution order of quercetin glycosides from apple pomace extracts on a new HPLC stationary phase with hydrophilic endcapping. Journal of Separation Science 25: 361-364   DOI   ScienceOn
6 Iwashina, T., Y. Omori, J. Kitajima, S. Akiyama, T. Suzuki, and H. Ohba. 2004. Flavonoids in translucent bracts of the Himalayan Rheum nobile (Polygonaceae) as ultraviolet shields. Journal of plant research 117(2): 101-107   DOI   ScienceOn
7 Aritomi, M. 1964. Chemical constituents in Aceraceous plants. II. Flavonoid constituents in leaves. Yakugaku Zasshi 84(4): 360-362   DOI   ScienceOn
8 Dong, L. P., W. Ni, J. Y. Dong, J. Z. Li, C. X. Chen, and H. Y. Liu. 2006. A new neolignan glycoside from the leaves of Acer truncatum. Molecules 11(12): 1009-1014   DOI   PUBMED   ScienceOn
9 Kim, J. H., B. C. Lee, J. H. Kim, G. S. Sim, D. H. Lee, K. E. Lee, Y. P. Yun, and H. B. Pyo. 2005. The isolation and antioxidative effects of vitexin from Acer palmatum. Archives of Pharmacal Research 28(2): 195-202   DOI   ScienceOn
10 Lee, C. B. 1985. Illustrated flora of Korea. Sung-Mun Publishing, Seoul, pp. 523
11 Akihisa, T., Y. Taguchi, K. Yasukawa, H. Tokuda, H. Akazawa, T. Suzuki, and Y. Kimura. 2006. Acerogenin M, a cyclic diarylheptanoid, and other phenolic compounds from Acer nikoense and their anti-inflammatory and anti-tumor-promoting effects. Chemical & Pharmaceutical Bulletin 54(5):735-739   DOI   ScienceOn
12 Tung, N. H., Y. Ding, S. K. Kim, K. H. Bae, and Y. H. Kim. 2008. Total peroxyl radical-scavenging capacity of the chemical components from the stems of Acer tegmentosum Maxim. Journal of Agricultural and Food Chemistry 56(22): 10510-10514   DOI   ScienceOn
13 Han, J. T., M. H. Bang, O. K. Chun, D. O. Kim, C. Y. Lee, and N. I. Baek. 2004. Flavonol glycosides from the aerial parts of Aceriphyllum rossii and their antioxidant activities. Archives of Pharmacal Research 27(4): 390-395   DOI   ScienceOn
14 Bate-Smith, E. C. 1977. Astringent tannins of Acer species. Phytochemistry 16(9): 1421-1426   DOI   ScienceOn
15 Kim, T. W. 1994. The woody plants of Korea in color. Kyo-Hak Publishing, Seoul, pp. 478
16 Jin, W. Y., P. T. Thuong, N. D. Su, B. S. Min, K. H. Son, H. W. Chang, H. P. Kim, S. S. Kang, D. E. Sok, and K. H. Bae. 2007. Antioxidant activity of cleomiscosins A and C isolated from Acer okamotoanum. Archives of Pharmacal Research 30(3): 275-281   DOI   ScienceOn
17 Bedgood, D. R., A. G. Bishop, P. D. Prenzler, and K. Robards. 2005. Analytical approaches to the determination of simple biophenols in forest trees such as Acer (maple), Betula (birch), Coniferus, Eucalyptus, Juniperus (cedar), Picea (spruce) and Quevcus (oak). Analyst 130(6): 809-823   DOI   ScienceOn
18 Guvenalp, Z. and L. O. Demirezer. 2005. Flavonol glycosides from Asperula arvensis L. Turkish Journal of Chemistry 29(2): 163-169
19 Hatano, T., S. Hattori, Y. Ikeda, T. Shingu, and T. Okuda. 1990. Tannins of Aceraceous plants. Part II. Gallotannins having a 1,5-anhydro-D-glucitol core and some ellagitannins from Acer species. Chemical & Pharmaceutical Bulletin 38(7):1902-1905   DOI
20 Kim, H. J., E. R. Woo, C. G. Shin, and H. K. Park. 1998. A new flavonol glycoside gallate ester from Acer okamotoanum and its inhibitory activity against human immunodeficiency virus-1 (HIV-1) integrase. Journal of Natural Products 61(1): 145-148   DOI   ScienceOn
21 Luo, W., M. Zhao, B. Yang, G. Shen, and G. Rao. 2009. Identification of bioactive compounds in Phyllenthus emblica L. fruit and their free radical scavenging activities. Food Chemistry 114(2): 499-504   DOI   ScienceOn