Browse > Article

Characterization of Chemical Composition and Thermal Behavior of Biomass Originated from Tobacco Industry  

Sung, Yong Joo (KT&G Central Research Institute)
Seo, Yung Bum (Dept. of Forest Products, College of Life Science and Agriculture, Chungnam National University)
Publication Information
Journal of the Korean Wood Science and Technology / v.36, no.6, 2008 , pp. 138-146 More about this Journal
Abstract
The chemical compositions, cell wall biopolymers and non-isothermal behavior of the stem biomass of Nicotiana Tabacum originated from tobacco industry were investigated in depth. On a weight basis, the contents of total ash and total sugar are 19.1% and 20.7% respectively. Lignin content was around 3% of tobacco stem biomass while pectin was over 7%. The holo-cellulose content in cell wall biopolymer was around 13% and the $\alpha$-cellulose constitutes 60% of the total holo-cellulose. The thermal behavior of stem biomass showed different patterns depending on either inert (nitrogen) or oxidizing (air) atmospheric condition. In the air atmosphere, the rapid thermal decompositions at around $473^{\circ}C$ and $581^{\circ}C$ were recorded as the peaks in DTG curve, while the peaks were not shown in the nitrogen atmosphere condition. The thermal analysis of the freeze dried soluble obtained from hot water extraction of tobacco stem biomass showed that the rapid thermal decomposition at around $581^{\circ}C$ in the air atmosphere was due to the residual char originated from the soluble fraction. The distinct difference in thermal decomposition between hemicellulose and cellulose were easily found in the DTG curve obtained in the nitrogen atmosphere.
Keywords
stem biomass; chemical composition; cell wall biopolymer; thermogravimetric analysis; hot water extraction;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Norman, A. 1999. Cigarette design and materials. in: D.L. Davis, M.T. Nielsen (Eds.), Tobacco: Production, Chemistry and Technology, Blackwell Science Limited, Oxford, UK, 353-387.
2 Oja, V., M. Hajaligol, and B. E. Waymack. 2006. The vaporization of semi-volatile compounds during tobacco pyrolysis, J. Anal. Appl. Pyrolysis 76: 117-123.   DOI   ScienceOn
3 Senneca, O., R. Chirone, R. Salatino, and L. Nappi. 2007. Patterns and kinetics of pyrolysis of tobacco under inert and oxidative conditions, J. Anal. Appl. Pyrolysis. 79: 227-233.   DOI   ScienceOn
4 김찬호, 나효환, 박영수, 한상빈, 이문수, 이운철, 김용옥, 복진영, 안기영, 김용하, 백순옥, 장기철, 지상운. 1991. 담배성분분석법, 한국인삼연초(연), 제일문화사, KOREA.
5 Nappi, L. and C. Liu. 2007. Advanced kinetic study on combustion of tobacco char by TG-FTIR, Proceedings of the third European Com- bustion Meeting ECM. 1-6.
6 Baskevitch, N. 1981. Continuing upward trend in low tar and nicotine cigarettes. Tabak Journal International. No.4: 45-49.
7 Raveendran, K., A. Ganesh, and K. C. Khilar. 1995. Influence of mineral matter on biomass pyrolysis characteristics. Fuel. 74(12): 1812-1822.   DOI   ScienceOn
8 Reina, J., E. Velo, and L. Puigjamer. 1998. Thermogravimetric study of the pyrolysis of waste wood, Thermochim. Acta. 320: 161-167.   DOI   ScienceOn
9 Abdallah, F. 2003. RECON's new role. Tob. Reporter, 5 (2003) 58-61.
10 박동규, 서명원, 구정회, 김상돈, 이시훈, 이재구, 송병호. 2007. 톱밥과 왕겨의 열분해 특성 연구. J. Korean Ind. Eng. Chem. 18(5): 415-423.   과학기술학회마을
11 조성일, 김미주, 지상운, 김용하, 민영근. 2006. 담배 엽중 칼륨 분석법의 평가. 한국연초학회지 28(1): 51-57.   과학기술학회마을
12 Calahorra, M. E., M. Cortazar, J. L. Egulazabal, and G. M. Cuzman. 1989. Thermogravimetric analysis of cellulose: effect of the molecular weight on thermal decomposition, J. of Appl. Polymer Sci. 37: 3305-3314.   DOI   ScienceOn
13 Jenkins, B. M., L. L. Baxter, T. R. Miles Jr., and T. R. Miles. 1998. Combustion properties of biomass. Fuel Processing Technology 54: 17-46.   DOI   ScienceOn
14 Wang, W., Y. Wang, L. Yang, B. Liu, M. Lan, and W. Sun. 2005. Studies on thermal behavior of reconstituted tobacco sheet, Thermochim. Acta. 437: 7-11.   DOI   ScienceOn
15 권영주, 장기철, 나효환, 김용하, 이문수. 2005. HPLC를 이용한 감초 추출물의 당 분석법 연구. 한국연초학회지. 27(1): 114-119.   과학기술학회마을
16 Orfao, J. J. M., F. J. A. Antunes, and J. L. Figueiredo. 1999. Pyrolysis kinetics of lignocellulosic materials- three independent reactions model, Fuel. 78: 349-358.   DOI   ScienceOn
17 Yi, S., M. R. Hajaligol, and S. H. Jeong. 2005. The prediction of the effects of tobacco type on smoke composition from the pyrolysis modeling of tobacco shreds. J. Anal. Appl. Pyrolysis, 74: 181-192.   DOI   ScienceOn
18 World Leaf Review 2007. 2007. World Tobacco. No.1: 29-30.
19 Bokelman, G. H. and W. S. Ryan. 1985. Analyses of bright and burley tobacco laminae and stems, Beitr. Tabakforsch. 13(1): 29-36.
20 Jenkins, B. M., R. R. Bakker, and J. B. Wei. 1995. On the properties of washed straw. Biomass and bioenergy. 10(4): 177-200.   DOI   ScienceOn
21 Leffingwell, J. C. 1999. Basic chemical constituents of tobacco leaf and differences among tobacco types. in: D.L. Davis, M.T. Nielsen (Eds.), Tobacco: Production, Chemistry and Technology, Blackwell Science Limited, Oxford, UK, 265-284.
22 Longanezi, T., M. P. A. Campos, and C. G. Mothe. 2002. Thermal investigation of uncased and cased tobacco. Thermochimica Acta. 392: 51-54.   DOI   ScienceOn