Browse > Article

Anatomical and Physical Characteristics of Pinus densiflora Wood Damaged by Forest Fire - Difference by Damage Level -  

Kwon, Sung-Min (College of Forest & Environmental Sciences, Kangwon National University)
Chun, Kun-Woo (College of Forest & Environmental Sciences, Kangwon National University)
Kim, Nam-Hun (College of Forest & Environmental Sciences, Kangwon National University)
Publication Information
Journal of the Korean Wood Science and Technology / v.36, no.4, 2008 , pp. 84-92 More about this Journal
Abstract
Anatomical and physical characteristics of Pinus densiflora woods damaged by forest fire at Yangyang-gun, Kangwon-do were investigated in present study. Even though the bark was severly carbonized, no trace of carbonization in the xylem was found. The amount of resin exudation was different by the degree of fire damage. Green moisture content of sapwood in the damaged wood was lower than that in the sound wood, but vice versa in the heartwood. Green density of heartwood in the damaged wood was higher than that in the sound wood, but there was no significant difference in sapwood. Cambial activities were found stopped in the severely damaged wood but were identified in the lightly damaged wood. In safranine staining process, epithelial and ray parenchyma cell walls in the damaged woods showed darker hue than those in the sound wood. Granular substances were observed in the lumina of ray parenchyma and epithelial cells of the severely damaged wood. Relative crystallinity of the outermost growth ring in the severely damaged wood was slightly higher than that in the sound wood.
Keywords
damaged wood; forest fire; anatomical and physical characteristics; Pinus densiflora; cambial activity;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 박정환, 박병수, 심국보, 조태수. 2005. 산불 피해목의 재질 변화에 관한 연구(I) -동해안 산불피해 소나무의 재질 특성-. 목재공학 33(6): 8-16.   과학기술학회마을
2 Bhuiyan, M. T. R., N. Hirai, and N. Sobue. 2000. Changes of crystallinity in wood cellulose by heat treatment under dried and moist conditions. Journal of Wood Science 46(6): 431-4361.   DOI   ScienceOn
3 Statheropoulos, M. and S. Karma. 2007. Complexity and origin of the smoke components as measured near the flame-front of a real forest fire incident: A case study. Journal of Analytical and Applied Pyrolysis 78(2): 430-437.   DOI   ScienceOn
4 Bhuiyan, M. T. R. and N. Hirai. 2005. Study of crystalline behavior of heat-treated wood cellulose during treatments in water. Journal of Wood Science 51(1): 42-47.   DOI
5 Hernandez, L., S. H. Encinas, A. M. White, del Rey, and G. R. Sanchez. 2007. Modelling forest fire spread using hexagonal cellular automata. Applied Mathematical Modelling 31(6): 1213-1227.   DOI   ScienceOn
6 Kiran Chand, T. R., K. V. S. Badarinath, V. Krishna Prasad, M. S. R. Murthy, C. D. Elvidge, and B. T. Tuttle. 2006. Monitoring forest fires over the Indian region using Defense Meteorological Satellite Program-Operational Linescan System nighttime satellite data. Remote Sensing of Environment 103(2): 165-178.   DOI   ScienceOn
7 Yildiz, S. and E. Gumuskaya. 2007. The effects of thermal modification on crystalline structure of cellulose in soft and hardwood. Building and Environment 42(1): 62-67.   DOI   ScienceOn
8 박정환, 박병수, 김광모, 이도식. 2008. 산불 피해목의 재질 변화에 관한 연구(II) - 산불피해 소나무의 경시적 재질변화 -. 목재공학 36(1): 30-35.   과학기술학회마을
9 Carcaillet, C, P. J. H. Richard, H. Asnong, L. Capece, and Y. Bergeron. 2006. Fire and soil erosion history in East Canadian boreal and temperate forests. Quaternary Science Reviews 25(13): 1489-1500.   DOI   ScienceOn
10 Segal, L., J. J. Creely, A. E. Martin, Jr., and C. M. Conrad. 1959. An empirical methods for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text. Trs. J. 786-794.
11 한국산업규격. 2006. 한국표준협회. KS F 2199.
12 황원중, 권구중, 김남훈. 2003a. 산불피해 소나무재의 해부 및 물리학적 특성. 목재공학 31(4): 1-7.   과학기술학회마을
13 산림청. 2007. 임업통계연보. 제37호. pp. 82.
14 이시영. 2000. 한국산불의 특성. 삼림과학연구 제16호: 156-163.
15 van Mantgemm, P. and M. Schwartz. 2003. Bark heat resistance of small trees in Californian mixed conifer forests: testing some model assumptions. Forest Ecology and Management 178(3): 341-352.   DOI   ScienceOn
16 Lavrov, A., A. B. Utkin, R. Vilar, and A. Fernandes. 2006. Evaluation of smoke dispersion from forest fire plumes using lidar experiments and modelling. International Journal of Thermal Sciences 45(9): 848-859.   DOI   ScienceOn
17 Lee, K. H., J. E. Kim, Y. J. Kim, J. H. Kim, and W. von Hoyningen-Huene. 2003. Impact of the smoke aerosol from Russian forest fires on the atmospheric environment over Korea during May 2003. Atmospheric Environment 39(1): 85-99.
18 Jaatinen, K., C. Knief, P. F. Dunfield, K. Yrjala, and H. Fritze. 2004. Methanotrophic bacteria in boreal forest soil after fire. FEMS Microbiology Ecology 50(3): 195-202.   DOI   ScienceOn
19 권성민, 김남훈. 2005. 춘천지역에서 생장하는 주요 수종의 연륜형성 -형성층 활동기간에 관하여-. 목재공학 33(4): 1-8.   과학기술학회마을
20 한국산업규격. 2006. 한국표준협회. KS F 2189.
21 Bhuiyan, M. T. R., N. Hirai, and N. Sobue. 2001. Effect of intermittent heat treatment on crystallinity in wood cellulose. Journal of Wood Science 47(5): 336-341.   DOI   ScienceOn
22 황원중, 권구중, 박종수, 김남훈. 2003b. 산불피해 소나무재의 역학적 특성 및 급속오븐 건조특성. 목재공학 31(4): 52-57.   과학기술학회마을