Browse > Article
http://dx.doi.org/10.22889/KJP.2022.53.4.181

Esculetin Suppresses the Growth and Proliferation of A431 Skin Cancer Cells via the MAPKs Pathway  

Jin Young, Sung (Department of Cosmetic Science, Semyung University)
Yong Min, Kim (Department of Cosmetic Science, Semyung University)
Publication Information
Korean Journal of Pharmacognosy / v.53, no.4, 2022 , pp. 181-191 More about this Journal
Abstract
As the incidence of skin cancer increases every year, non-surgical treatment methods for cancer are being sought. Esculetin, a natural dihydroxy coumarin, is attracting attention as a therapeutic agent for certain diseases, such as cancer, based on its broad pharmacological activity. In this study, the anticancer ability of esculetin was evaluated using the epidermoid carcinoma cell line A431. As a result of evaluating the apoptosis ability of esculetin by MTT assay, apoptosis was observed in a time-concentration-dependent manner regardless of the presence or absence of FBS. As a result of quantitative real-time PCR, esculetin reduced cyclin D1 mRNA in a time-concentration-dependent manner. In addition, as a result of western blotting, esculetin significantly inhibited phosphorylation of ERK, JNK, and p38 in a concentration-dependent manner. The results of this study suggest that esculetin has the potential to be used as an effective natural medicine for the treatment of skin cancer.
Keywords
Esculetin; Anti-cancer; Cell cycle; Apoptosis; Mitogen-activated protein kinases;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Liu, K., Yu, D., Cho, Y. Y., Bode, A. M., Ma, W., Yao, K., Li, S., Li, J., Bowden, G. T., Dong, Z. and Dong, Z. (2013) Sunlight UV-Induced skin cancer relies upon activation of the p38α signaling pathway. Mol. Cell. Biol. 73: 2181-2188. 
2 Sauter, E. R., Nesbit, M., Litwin, S., Klein-Szanto, A. J. P., Cheffetz, S. and Herlyn, M. (1999) Antisense Cyclin D1 induces apoptosis and tumor shrinkage in human squamous carcinomas. Cancer Res. 59: 4876-4881. 
3 Liang, C., Ju, W., Pei, S., Tang, Y. and Xiao, Y. (2017) Pharmacological activities and synthesis of esculetin and its derivatives: a mini-review. Molecules 22: 387. 
4 Choi, Y. J., Lee, C. M. Park, S. H. and Nam, M. J. (2019) Esculetin induces cell cycle arrest and apoptosis in human colon cancer LoVo cells. Environ. Toxicol. 34: 1129-1136.    DOI
5 Arora, R., Sawney, S., Saini, V., Steffi, C., Tiwari, M. and Saluja, D. (2016) Esculetin induces antiproliferative and apoptotic response in pancreatic cancer cells by directly binding to KEAP1. Mol. Cancer 15: 64. 
6 Turkekul, K., Colpan, R. D., Baykul, T., Ozdemir, M. D. and Erdogan, S. (2018) Esculetin inhibits the survival of human prostate cancer cells by inducing apoptosis and arresting the cell cycle. J. Cancer Prev. 23: 10-17.    DOI
7 Jeon, Y. J., Jang, J. Y., Shim, J. H., Myung, P. K. and Chae, J. I. (2015) Esculetin, a coumarin derivative, exhibits anti-proliferative and pro-apoptotic activity in G361 human malignant melanoma. J. Cancer Prev. 20: 106-112.    DOI
8 Yuan, C., Jiang, B., Xu, X., Wan, Y., Wang, L. and Chen, J. (2022) Anti-human ovarian cancer and cytotoxicity effects of nickel nanoparticles green-synthesized by Alhagi maurorum leaf aqueous extract. J. Exp. Nanosci. 17: 113-125.    DOI
9 Qie, S. and Diehl, J. A. (2016) Cyclin D1, cancer progression, and opportunities in cancer treatment. J. Mol. Med. 94: 1313-1326.    DOI
10 Eskandari, E. and Eaves, C. J. (2022) Paradoxical roles of caspase-3 in regulating cell survival, proliferation, and tumorigenesis. J. Cell Biol. 221: e202201159.
11 Park, J. E., Kim, D. H., Ha, E. Y., Choi, S. M., Choi, J. S., Chun, K. S. and Joo, S. H. (2019) Thymoquinone induces apoptosis of human epidermoid carcinoma A431 cells through ROS-mediated suppression of STAT3. Chem. Biol. Interact. 312: 108799. 
12 Amini, S., Viera, M. H., Valins, W. and Berman, B. (2010) Nonsurgical innovations in the treatment of nonmelanoma skin cancer. J. Clin. Aesthet. Dermatol. 3: 20-34. 
13 Wang, L., Liu, T., Nishioka, M., Aguirre, R. L., Win, S. S. and Okada, N. (2006) Activation of ERK1/2 and cyclin D1 expression in oral tongue squamous cell carcinomas: Relationship between clinicopathological appearances and cell proliferation. Oral Oncol. 42: 625-631.    DOI
14 Madan, V., Lear, J. T. and Szeimies, R. M. (2010) Non-melanoma skin cancer. Lancet. 375: 673-685.    DOI
15 Kohno, M. and Pouyssegur, J. (2006) Targeting the ERK signaling pathway in cancer therapy. Annals of Medicine 38: 200-211.    DOI
16 Yuan, J., Dong, X., Yap, J. and Hu, J. (2020) The MAPK and AMPK signalings: interplay and implication in targeted cancer therapy. J. Hematol. Oncol. 13: 1-19.    DOI
17 Li, J., Malakhova, M., Mottamal, M., Reddy, K., Igor, K., Andria, C., Langfald, A., Oi, N., Kim, M. O., Zhu, F., Sosa, C. P., Zhou, K., Bode, A. N. and Dong, Z. (2012) Norathyriol suppresses solar UV-induced skin cancer by targeting ERKs. Cancer Res. 72: 260-270. 
18 Chambard, J. C., Lefloch, R., Pouyssegur, J. and Lenormand, P. (2007) ERK implication in cell cycle regulation. Biochim. Biophys. Acta - Mol. Cell Res. 1773: 1299-1310.    DOI
19 Zhang, J. and Bowden, G. T. (2012) Activation of p38 MAP kinase and JNK pathways by UVA irradiation. Photochem. Photobiol. Sci. 11: 54-61.    DOI
20 Hammouda, M. B., Ford, A. E., Liu, Y. and Zhang, J. Y. (2020) The JNK signaling pathway in inflammatory skin disorders and cancer. Cells 9: 857. 
21 Bachelor, M. A. and Bowden, G. T. (2004) Ultraviolet A-induced modulation of Bcl-XL by p38 MAPK in human keratinocytes. Biol. Chem. 279: 42658-42668.    DOI