Browse > Article
http://dx.doi.org/10.22889/KJP.2022.53.3.133

Triterpenoids from the Flower of Viburnum opulus var. clavescens for. sterile  

Choi, Seong Yeon (College of Pharmacy, Kangwon National University)
Kim, Myong Jo (College of Agriculture and Life science, Kangwon National University)
Chun, Wanjoo (College of Medicine, Kangwon National University)
Kwon, Yongsoo (College of Pharmacy, Kangwon National University)
Publication Information
Korean Journal of Pharmacognosy / v.53, no.3, 2022 , pp. 133-137 More about this Journal
Abstract
Four known triterpenoids and one sterol glycoside were isolated from Viburnum opulus var. clavescens for. sterile flowers. By the spectral data analysis, we determined to be the structures of isolated compounds as 𝛼-amyrin (1), ursolic aldehyde (2), maslinic acid (3), ursolic acid (4) and 𝛽-sitosterol-3-O-glucoside (5). Among the isolated compounds, we revised 13C-NMR chemical shifts of ursolic aldehyde (2) using DEPT and HMBC spectra analysis. 𝛼-Amyrin (1), ursolic aldehyde (2), maslinic acid (3) and 𝛽-sitosterol-3-O-glucoside (5) were isolated for the first time from this plant.
Keywords
Viburnum opulus var. clavescens for. sterile; Viburnaceae; Flower; Triterpenoids;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Kajasczak, D., Zaklos-Szyda, M. and Podesedek (2020) Viburnum opulus L. - A Review of phytochemistry and biological effects. Nutrients, 12: 3398.
2 이영노 (1996) 원색 한국식물도감, 743-744, 교학사, 서울.
3 Rychlinska, I. (2008) Sterols and triterpenens in Viburnum opulus L. leaves. Herba Pol. 54: 59-65.
4 Xie, Y., Wang, J., Geng, Y.-M., Zhang, Z., Qu, Y.-F. and Wang, G.-S. (2015) Phenolic compounds from the fruits of Viburnum sargentii Koehn. Molecules 20: 14377-14385.   DOI
5 Bae, K. E., Chong, H. S., Kim, D. S., Choi, Y. W., Kim, Y. S. and Kim, Y. K. (2010) Compounds from Viburnum sargentii Koehn and evaluation of their cytotoxic effects on human cancer cell lines. Moelcules 15: 4599-4609.   DOI
6 Kim, D. H., Han, K. M., Chung, I. S., Kim, D. K., Kim, S. H., Kwon, B. M., Jeong, T. S., Park, M. H., Ahn, E. M. and Baek, N. I. (2005) Triterpenoids from the flowers of Campsis grandflora K. Schum. as human acyl-CoA: Cholesteryl acyltransferase inhibitors. Arch. Pharm. Res. 28: 550-556.   DOI
7 Lee, D. Y., Lee, M. H., Jung, T. S., Kwon, B. M., Baek, N. I. and Rho, Y. D. (2010) Triterpenoid and lignan from the fruits of Cornus kousa inhibit the activities of PRL-3 and LDL-oxidation. J. Korean Soc. Appl. Biol. Chem. 53: 97-100.
8 Hota, R. K. and Bapuji, M. (1994) Triterpenoids from the resin of Shorea robusta. Phytochemistry, 35: 1073-1074.   DOI
9 Son, K. H., Kwon, S. Y., Kim, H. P., Chang, H. W. and Kang, S. S. (1998) Constituents from Syzygium aromaticum Merr. et Perry. Nat. Prod. Sci. 4: 263-267.
10 Karen Cardoso, B., Line Marko de Oliveira, H., Zonta Melo, U., Mariano Fernandez, C. M., Franco de Araujo Almeida Campo, C., Goncalves, J. E., Laverde, A. Jr., Barion Romagnolo, M., Andrea Linde, G. and Cristiani Gazim, Z.(2020) Antioxidant activity of α and β-amyrin isolated from Myrcianthes pungens leaves. Nat. Prod. Res. 34: 1777-1781.   DOI
11 Biskup, E., Golebiowski, M., Gniadecki, R., Stepnowski, P. and Lojkowska, E. (2012) Triterpenoid α-amyrin stimulates proliferation of human keratinocytes but does not protect them against UVB damage. Acta Biochim. Pol. 59: 255-260.
12 Mlala, S., Oyedeji, A. O., Gondwe, M. and Oyedeji, O. O. (2019) Ursolic acid and its derivatives as bioactive agents. Molecules 24: 2751.
13 Yu, L., Xie, X., Cao, X., Chen, J., Chen, G., Chen, Y., Li, G., Qin, J., Peng, F. and Peng, C. (2021) The Anticancer potential of maslinic acid and its derivatives: A Review. Drug Des. Devel. Ther. 15: 3863-3879.   DOI
14 Nguedia, M. Y., Tueche, A. B., Yaya, A. J. G., Yadji, V., Ndinteh, D. T., Njamen, D. and Zingue, S. (2020) Daucosterol from Crateva adansonii DC (Capparaceae) reduces 7,12-dimeth- ylbenz(a)anthracene-induced mammary tumors in Wistar rats. Environ. Toxicol. 35: 1125-1136.   DOI
15 Lee, J. H., Lee, J. Y., Park, J. H., Jung, H. S., Kim, J. S., Kang, S. S., Kim, Y. S. and Han, Y. (2007) Immunoregulatory activity by daucosterol, a beta-sitosterol glycoside, induces protective Th1 immune response against disseminated Candidiasis in mice. Vaccine 25: 3834-3840   DOI
16 한국식물지편집위원회 (2018) 한국속식물지, 1253-1256, 홍릉과학출판사, 서울.
17 이우철 (1996) 원색 한국기준식물도감, 334, 아카데미서적, 서울.
18 이창복 (2006) 원색 대한식물도감 하권, 234, 향문사, 서울.
19 Cesoniene, L., Daubaras, R., Venicloviene, J. and Viskelis, P. (2010) Biochemical and agro-biological diversity of Viburnum opulus genotypes. Cent. Eur. J. Biol. 5: 864-871.   DOI
20 Perova, I., Zhogova, A., Cherkashin, A., Eller, K., Ramenskaya, G. and Samylina, I. (2014) Biological active substances from European guelder berry fruits. Pharm. Chem. J. 48: 332-339.   DOI
21 Akbulut, M., Calsir, S., Marakoglu, I. and Coklar, H. (2008) Chemical and technological properties of European carnberrybush (Viburnum opulus L.) fruits. Asian J. Chem. 20: 1875-1885.
22 Polka, D. and Podesdek, A. (2019) Pheonolics composition and antioxidant capacity of guelder rose fruit, flower and bark extracts. Biotechnol. Food Sci. 83: 37-46.
23 배기환 (2019) 천연약물도감 II, 234, 교학사, 서울.
24 Lee, M. J., Kim, J. H., Cha, B. J., Seo, K. H., Baek, N. I. and Lee, Y. H. (2016) Triterpenoids from the fruits of Prunus davidiana. J. Appl. Biol. Chem. 59: 155-158.   DOI
25 Jing, Z., Rui, W., Ruihua, L., Hao, Y. and Hengtong, F. (2021) Review of the biological cctivity of maslinic acid. Curr .Drug Targets 22: 1496-1506.   DOI
26 Ngo, Q. M, T., Cao, T. Q., Woo, M. H., Min, B. S. and Weon, K. Y. (2018) Cytotoxic triterpenoids from the fruits of Ligustrum japonicum. Nat. Prod. Sci. 24: 93-98.   DOI
27 Giacoman-Martinez, A., Alarcon-Aguilar, F. J., Zamilpa, A., Huang, F., Romero-Nava, R., Roman-Ramos, R. and Almanza-Perez, J. C.(2021) α-Amyrin induces GLUT4 translocation mediated by AMPK and PPARδ/γ in C2C12 myoblasts. Can. J. Physiol. Pharmacol. 99: 935-942.   DOI
28 Khwaza, V., Oyedeji, O. O., Aderibigbe, B. A.(2020) Ursolic acid-based derivatives as potential anti-cancer agents: An Update. Int. J. Mol. Sci. 21: 5920.