Browse > Article
http://dx.doi.org/10.22889/KJP.2022.53.2.96

Antioxidant Activity of Ethyl acetate Fraction of Melampyrum roseum Maxim. in Caenorhabditis elegans  

Kim, Jun Hyeong (Department of Food & Nutrition, Woosuk University)
Park, Chang Bum (Department of Pharmacy, Woosuk University)
Park, Jong Hyun (Department of Pharmacy, Woosuk University)
Kwon, Kang Mu (Department of Pharmacy, Woosuk University)
Hwang, In Hyun (Department of Pharmacy, Woosuk University)
Ma, Sang Yong (Department of Food & Nutrition, Woosuk University)
Oh, Suk-Heung (Department of Food & Nutrition, Woosuk University)
Kim, Dae Keun (Department of Pharmacy, Woosuk University)
Publication Information
Korean Journal of Pharmacognosy / v.53, no.2, 2022 , pp. 96-101 More about this Journal
Abstract
Caenorhabditis elegans model system was used to investigate the antioxidant activity of methanol extract of Melampyrum roseum (Scrophulariaceae). The ethyl acetate soluble fraction of the M. roseum methanol extract showed the best DPPH radical scavenging activity. The ethyl acetate fraction was measured for the activity of superoxide dismutase (SOD), catalase, and oxidative stress tolerance by using C. elegans along with reactive oxygen species (ROS) level. In addition, to confirm that the regulation of the stress response gene is responsible for the increased stress tolerance of C. elegans treated by the ethyl acetate fraction, SOD-3 expression was measured using a transgenic strain. As a result, the ethyl acetate fraction increased SOD and catalase activity, and decreased ROS accumulation in a dose-dependent manner. In addition, the ethyl acetate fraction-treated CF1553 worm showed higher SOD-3::GFP intensity than the control worm.
Keywords
Melampyrum roseum; Caenorhabditis elegans; Antioxidant activity; Catalase; SOD;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Mekheimer, R. A., Sayed, A. A. and Ahmed, E. A. (2012) Novel 1,2,4-triazolo[1,5-a]pyridines and their fused ring systems attenuate oxidative stress and prolong lifespan of Caenorhabditis elegans. J. Med. Chem. 55: 4169-4177.   DOI
2 Aebi, H. (1984) Catalase in vitro. Methods Enzymol. 105: 121-126.   DOI
3 Kim, H. N., Seo, H. W., Kim, B. S., Lim H. J., Lee, H, N., Park, J. S., Yoon, Y. J., Oh, J. W., Oh, M. J., Kwon, J., Oh, C. H., Cha, D. S. and Jeon, H. (2015) Lindera obtusiloba extends lifespan of Caenorhabditis elegans. Nat. Prod. Sci. 21: 128-133.
4 Ginnopolitis, C. N. and Ries, S. K. (1977) Superoxide dismutase. I. occurrence in higher plants. Plant Physiol. Biochem. 59: 309-314.
5 Wang, J., Deng, N., Wang, H., Li, T., Chen, L., Zheng, B. and Liu, R. H. (2020) Effects of orange extracts on longevity, healthspan, and stress resistance in Caenorhabditis elegans. Molecules 25: 351.   DOI
6 Mekheimer, R. A., Sayed, A. A. and Ahmed, E. A. (2012) Novel 1,2,4-triazolo[1,5-a]pyridines and their fused ring systems attenuate oxidative stress and prolong lifespan of Caenorhabiditis elegans. J. Med. Chem. 55: 4169-4177.   DOI
7 Yang, S. and Lian, G. (2020) ROS and diseases: role in metabolism and energy supply. Mol. Cell Biochem. 467: 1-12.   DOI
8 Chen, C., Zhou, M., Ge, Y. and Wang, X. (2020) SIRT1 and aging related signaling pathways. Mech. Ageing Dev. 187: 111215.   DOI
9 Zia, A., Farkhondeh, T., Pourbagher-Shahri, A. M. and Samarghandian, S. (2021) The role of curcumin in aging and senescence: Molecular mechanisms. Biomed. Pharmacother. 134: 111119.   DOI
10 Liu, F., Luo, Q., Zhang ,Y., Huang, K., Cao, X., Cui, C., Lin, K. and Zhang, M. (2020) Trans-generational effect of neurotoxicity and related stress response in Caenorhabditis elegans exposed to tetrabromobisphenol A. Sci. Total Environ. 703: 134920.   DOI
11 Sreedhar, A., Aguilera-Aguirre, L. and Singh, K. K. (2020) Mitochondria in skin health, aging, and disease. Cell Death Dis. 11: 444.   DOI
12 Wang, Y., Branicky, R., Noe, A. and Hekimi, S. (2018) Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. J. Cell Biol. 217: 1915-1928.   DOI
13 Chung, B. S. and Kim, Y. H. (1982) Iridoid glycoside (IV); Studies on the iridoid glucoside Melampyrum roseum Max. Kor. J. Pharmacogon. 13: 106-110.
14 Villalpando-Rodriguez, G. E. and Gibson, S. B. (2021) Reactive oxygen species (ROS) regulates different types of cell death by acting as a rheostat. Oxid. Med. Cell Longev. 2021: 9912436.
15 Pizzino, G., Irrera, N., Cucinotta, M., Pallio, G., Mannino, F., Arcoraci, V., Squadrito, F., Altavilla, D. and Bitto, A. (2017) Oxidative stress: Harms and benefits for human health. Oxid. Med. Cell Longev. 2017: 8416763.   DOI
16 Senoner, T. and Dichtl, W. (2019) Oxidative stress in cardiovascular diseases: Still a therapeutic target? Nutrients 11: 2090.   DOI
17 Istomina, A., Yelovskaya, O., Chelomin, V., Karpenko A. and Zvyagintsev, A. (2021) Antioxidant activity of far Eastern bivalves in their natural habitat. Mar. Environ. Res. 169: 105383.   DOI
18 Roh, J. H., Moon, H. I. and Zee, O. P. (2000) Phytochemical constituents from Melampyrum roseum var. hirsutum Beauv. Kor. J. Pharmacogn. 31: 157-162.
19 Yoshida, T., Mori, K., Hatano, T., Okumura, T., Uehara, I., Komagoe, K., Fujita, Y. and Okuda, T. (1989) Studies on inhibition mechanism of autooxidation by tannins and flavonoids. V: radical scavenging effects of tannins and related polyphenols on 1,1-diphenyl-2-picrylhydrazyl radical. Chem. Pharm. Bull. 37: 1919-1921.   DOI
20 Brenner, S. (1974) The genetics of Caenorhabditis elegans. Genetics 77: 71-94.   DOI