Browse > Article
http://dx.doi.org/10.22889/KJP.2022.53.2.57

Secoiridoids, Iridoids and Flavonol Glycosides from Hydrangea paniculata Flowers and their C2C12 Myotube Hypertrophic Activity  

Gao, Eun Mei (College of Pharmacy, Hanyang University)
Kim, Chul Young (College of Pharmacy, Hanyang University)
Publication Information
Korean Journal of Pharmacognosy / v.53, no.2, 2022 , pp. 57-63 More about this Journal
Abstract
Five secoiridoids (1-3, 5, 10), a iridoid (4) three flavonol glycosides (7-9) and a coumarin (6), were isolated from the flowers of Hydrangea paniculata. Their chemical structures were elucidated as kingiside (1), morroniside (2), sweroside (3), loganin (4), vogeloside (5), umbelliferone (6), quercetin-3-O-sambubioside (7), quercetin-3-O-neohesperidoside (8), kaempferol 3-O-sambubioside (9) and secologanin dimethyl acetal (10), respectively, by spectroscopic analysis. All isolated compounds 1-10 were assessed for their ability to induce C2C12 myotube hypertrophy. Among them, loganin (4) and kaempferol 3-O-sambubioside (9) increase the diameter of C2C12 myotubes. All isolated compounds 1-10 were firstly reported from the flowers of Hydrangea paniculata, and the skeletal muscle hypertrophic activity of 4 and 9 was also reported for the first time.
Keywords
Hydrangea paniculata Siebold; Secoiridoids; Iridoids; Flavonol glycosides; C2C12 myotube hypertrophy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Yin, L., Li, N., Jia, W., Wang, N., Liang, M., Yang, X. and Du, G. (2021) Skeletal muscle atrophy: From mechanisms to treatments. Pharmacol. Res. 172: 105807.   DOI
2 Sen, Z., Weida, W., Jie, M., Li, S., Dongming, Z. and Xiaoguang, C. (2019) Coumarin glycosides from Hydrangea paniculata slow down the progression of diabetic nephropathy by targeting Nrf2 anti-oxidation and smad2/3-mediated profibrosis. Phytomedicine 57: 385-395.   DOI
3 Zhang, S., Xin, H., Li, Y., Zhang, D., Shi, J., Yang, J. and Chen, X. (2013) Skimmin, a coumarin from Hydrangea paniculata, slows down the progression of membranous glomerulonephritis by anti-inflammatory effects and inhibiting immune complex deposition.Evid.-Based Complement. Altern. Med. 2013: 819296.   DOI
4 Kawai, H., Kuroyanagi, M. and Ueno, A. (1988) Iridoid glucosides from Lonicera japonica THUNB. Chem. Pharm. Bull. 36: 3664-3666.   DOI
5 Shi, J., Li, C. J., Yang, J. Z., Yuan, Y. H., Chen, N. H. and Zhang, D. M. (2012) Coumarin glycosides and iridoid glucosides with neuroprotective effects from Hydrangea paniculata. Planta Med. 78: 1844-1850.   DOI
6 Ma, J., Li, C. J., Yang, J. Z., Li, Y., Bao, X. Q., Chen, N. H. and Zhang, D. M. (2017) Three new coumarin glycosides from the stems of Hydrangea paniculata. J. Asian Nat. Prod. Res. 19: 320-326.   DOI
7 Garcia, J., Mpondo, E. M. and Kaouadji, M. (1990) Kingiside and derivative from Gentiana pyrenaica. Phytochemistry 29: 3353-3355.   DOI
8 Kazuma, K., Noda, N. and Suzuki, M. (2003) Malonylated flavonol glycosides from the petals of Clitoria Ternatea. Phytochemistry 62: 229-237.   DOI
9 Sanchez, A. M., Csibi, A., Raibon, A., Docquier, A., Lagirand-Cantaloube, J., Leibovitch, M.-P., Leibovitch, S. A. and Bernardi, H. (2013) eIF3f: a central regulator of the antagonism atrophy/hypertrophy in skeletal muscle. Int. J. Biochem. Cell Biol. 45: 2158-2162.   DOI
10 Fanzani, A., Conraads, V. M., Penna, F. and Martinet, W. (2012) Molecular and cellular mechanisms of skeletal muscle atrophy: an update. J. Cachexia Sarcopenia Muscle 3: 163-179.   DOI
11 Lee, Y. N. (1996) Flora of Korea, 291, Kyo-Hak Publishing Co., LTD, Seoul.
12 Zhang, S., Ma, J., Sheng, L., Zhang, D., Chen, X., Yang, J. and Wang, D. (2017) Total coumarins from Hydrangea paniculata show renal protective effects in lipopolysaccharide-induced acute kidney injury via anti-inflammatory and antioxidant activities. Front. Pharmacol. 8: 872.   DOI
13 Sen, Z., Jie, M., Jingzhi, Y., Dongjie, W., Dongming, Z. and Xiaoguang, C. (2017) Total coumarins from Hydrangea paniculata protect against cisplatin-induced acute kidney damage in mice by suppressing renal inflammation and apoptosis. Evid.-Based Complement. Altern. Med. 2017: 5350161.   DOI
14 Ma, J., Sun, H., Li, C. J., Yang, J. Z., Chen, F. Y. and Zhang, D. M. (2017) Chemical constituents from the stems of Hydrangea paniculata. J. Asian Nat. Prod. Res. 19: 564-571.   DOI
15 Shi, J., Li, C. J., Yang, J. Z., Ma, J., Wang, C., Tang, J., Li, Y., Chen, H. and Zhang, D. M. (2014) Hepatoprotective coumarins and secoiridoids from Hydrangea paniculata. Fitoterapia 96: 138-145.   DOI
16 Ma, J., Li, C. J., Yang, J. Z., Sun, H. and Zhang, D. M. (2017) New phenylpropanoid and coumarin glycosides from the stems of Hydrangea paniculata Sieb. Molecules 22: 133.   DOI
17 Shi, J., Li, C. J., Yang, J. Z., Ma, J., Li, Y., Chen, H. and Zhang, D. M. (2015) Monoterpenes from the leaves of Hydrangea paniculata and their hepatoprotective activities. J. Asian Nat. Prod. Res. 17: 512-518.   DOI
18 Singh, R., Singh, B., Singh, S., Kumar, N., Kumar, S. and Arora, S. (2010) Umbelliferone-An antioxidant isolated from Acacia nilotica (L.) Willd. Ex. Del. Food Chem. 120: 825-830.   DOI
19 Lui, L., Sun, A., Wu, S. and Lui, R. (2009) Preparative purification of morroniside and loganin from Fructus corni by combination of macroporous absorption resin and HSCCC. J. Chromatogr. Sci. 47: 333-336.   DOI
20 Horn, M. M., Drewes, S. E., Brown, N. J., Munro, O. Q., Meyer, J. M. and Mathekga, A. D. (2001) Transformation of naturally-occurring 1,9-trans-9,5-cis sweroside to all trans sweroside during acetylation of sweroside aglycone. Phytochemistry 57: 51-56.   DOI
21 Deng, S., Deng, Z., Fan, Y., Li, J., Liu, R. and Xiong, D. (2009) Application of high-speed counter-current chromatography coupled with high performance liquid chromatography for the separation and purification of quercetin-3-Osambubioside from the leaves of Nelumbo nucifera. Front. Chem. Eng. China 3: 375-382.   DOI
22 Beninger, C. W., Hosfield, G. L. andNair, M. G. (1998) Flavonol glycosides from the seed coat of a new Manteca-type dry bean (Phaseolus vulgaris L.). J. Agric. Food Chem. 46: 2906-2910.   DOI