Browse > Article
http://dx.doi.org/10.22889/KJP.2022.53.1.8

Anti-inflammatory Constituents of Robinia pseudoacacia Root Bark  

Kang, Dong-Min (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University)
Park, Woo Sung (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University)
Kim, Hye-Jin (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University)
Jeong, Woo-Jin (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University)
Kang, Kwon Kyoo (Division of Horticultural Biotechnology, Hankyong National University)
Ahn, Mi-Jeong (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University)
Publication Information
Korean Journal of Pharmacognosy / v.53, no.1, 2022 , pp. 8-15 More about this Journal
Abstract
Robinia pseudoacacia L. (Leguminosae) is widely distributed in Asia, North America and Europe. The root bark has been traditionally used for hemostasis, arthritis and hypertension. Therefore, this study was conducted to identify the biological activity and the bioactive constituents of the root bark. We found that the methanol extract obtained from the root bark of R. pseudoacacia reduced the level of ROS and NO production in LPS-induced inflammation of RAW 264.7 cell line. Among the fractions, methylene chloride fraction showed the highest inhibitory activity against the inflammation. Seven constituents (1-7) were isolated from this fraction, and the chemical structures were determined to be medicarpin (1), (-)-vestitol (2), indole 3-carboxaldehyde (3), 3-acetylindole (4), liquiritigenin (5), 4(1H)-quinolone (6) and 8-methoxyononin (7). Among the isolates, medicarpin (1), (-)-vestitol (2), 3-acetylindole (4) and liquiritigenin (5) inhibited ROS and NO production in a dose-dependent manner. This is the first study to show the anti-inflammatory activity of the root bark of R. pseudoacacia, and it is suggested that the four constituents (1, 2, 4, and 5) could play a role in the biological activity.
Keywords
Robinia pseudoacacia; Anti-inflammation; Nitric oxide; Reactive oxygen species;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Yahara, S., Ogata, T., Saijo, R., Konishi, R., Yamahara, J., Miyahara, K. and Nohara, T. (1989) Isoflavan and related compounds from Dalbergia odorifera. I. Chem. Pharm. Bull. 37: 979-987.   DOI
2 Zhao, X., Mei, W., Gong, M., Zuo, W., Bai, H. and Dai, H. (2011) Antibacterial activity of the flavonoids from Dalbergia odorifera on Ralstonia solanacearum. Molecules 16: 9775-9782.   DOI
3 Ashour, M. A., Elkhayat, E. S., Ebel, R., Edrada, R. and Proksch, P. (2007) Indole alkaloid from the Red Sea sponge Hyrtios erectus. ARKIVOC xv: 225-231.
4 Guchhait, S. K., Kashyap, M. and Kamble, H. (2011) ZrCl4-mediated regio- and chemoselective friedel-crafts acylation of indole. J. Org. Chem. 76: 4753-4758.   DOI
5 Khamsan, S., Liawruangrath, S., Teerawutkulrag, A., Pyne, S., Garson, M. and Liawruangrath, B. (2012) The isolation of bioactive flavonoids from Jacaranda obtusifolia H. B. K. ssp. rhombifolia (G. F. W. Meijer) Gentry. Acta Pharm. 62: 181-190.   DOI
6 Neng, T. R., Bo, Q. X., Hong, G. S., Ping, X. P., Yang, S. Y. and An, G. D. (2012) Chemical constituents of Spatholobus suberectus. Chin. J. Nat. Med. 10: 0032-0035.   DOI
7 Miller, D. K., Sadowski, S., Han, G. Q. and Joshua, H. (1989) Identification and isolation of medicarpin and a substituted benzofuran as potent leukotriene inhibitors in an anti-inflammatory Chinese herb. Prostaglandins Leukot. Essent. Fatty Acids 38: 137-143.   DOI
8 Bueno-Silva, B., Rosalen, P. L., Alencar, S. M. and Mayer, M. P. A. (2020) Vestitol drives LPS-activated macrophages into M2 phenotype through modulation of NF-κB pathway. Int. Immunopharmacol. 82: 106329.   DOI
9 이창복(1985) 원색 대한식물도감 (상). 향문사, 서울, p633.
10 Wang, Y. H. and Zeng, K. W. (2019) Natural products as a crucial source of anti-inflammatory drugs: recent trends and advancements. J. Tradit. Chin. Med. 4: 257-268.
11 정보섭(1990) 향약대사전. 영림사, 서울, p706.
12 國家中醫藥管理局 中化本草 編委會(1999) 中化本草 (4). 上海科學技朮出版社, Shanghai, p624.
13 Cui, B., Kinzo, J. and Nohara, T. (1993) Triterpene glycosides from the bark of Robinia pseudo-acacia L. Chem. Pharm. Bull. 41: 553-556.   DOI
14 Hong, S. H., Suh, H. J. and Oh, J. S. (2017) Phenolic chemical constituents of the stem barks of Robinia pseudoacacia. Chem. Nat. Compd. 53: 359-361.   DOI
15 Veitch, N. C., Elliott, P. C., Kite, G. C. and Lewis, G. P. (2010) Flavonoid glycosides of the black locust tree, Robinia pseudoacacia. Phytochemistry 71: 479-486.   DOI
16 Kwon, Y. S., Jeon, S. H. and Kim, C. M. (2000) Isoflavonoids from the root cortex of Robinia pseudo-acacia. Nat. Prod. Sci. 6: 139-141.
17 Kim, Y. W., Zhao, R. J., Park, S. J., Lee, J. R., Cho, I. J., Yang, C. H., Kim, S. G. and Kim, S. C. (2008) Anti-inflammatory effects of liquiritigenin as a consequence of the inhibition of NF-κB-dependent iNOS and proinflammatory cytokines production. Br. J. Pharmacol. 154: 165-173.   DOI
18 Bae, Y. S., Ham, Y. H. and Kim, J. K. (2000) New flavan 3,4-diol derivatives from the heartwood of Robinia pseudoacacia. Mokchae Konghak 28: 25-28.
19 Sanz, M., Simon, B. F. D., Esteruelas, E., Munoz, A. M., Cadahia, E., Hernandez, T., Estrella, I. and Pinto, E. (2011) Effect of toasting intensity at cooperage on phenolic compounds in acacia (Robinia pseudoacacia) heartwood. J. Agric. Food Chem. 59: 3135-3145.   DOI
20 Zhang, L., B., Lv, J. L. and Zhang, H. (2013) Geranyl flavonoids from Robinia pseudoacacia. Nat. Prod. Commun. 8: 335-336.
21 Kim, H. S., Jang, J. M., Yun, S. Y., Zhou, D., Piao, Y., Ha, H. C., Back, M. J., Shin, I. C. and Kim, D. K. (2019) Effect of Robinia pseudoacacia leaf extract on interleukin-1β-mediated tumor angiogenesis. In vivo 33: 1901-1910.   DOI
22 Ji, H. F., Du, A. L., Zhang, L. W., Xu, C. Y., Yang, M. D. and Li, F. F. (2012) Effects of drying methods on antioxidant properties in Robinia pseudoacacia L. flowers. J. Med. Plants Res. 6: 3233-3239.
23 Lee, T. H., Kwak, H. B., Kim, H. H., Lee, Z. H., Chung, D. K., Baek, N. I. and Kim, J. Y. (2007) Methanol extracts of Stewartia koreana inhibit cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) gene expression by blocking NF-κB transactivation in LPS-activated RAW 264.7 cells. Mol. Cells 23: 398-404.
24 Bunce, R. A. and Nammalwar, B. (2010) 4(1H)-Quinolinones by a tandem reduction-addition-elimination reaction. Org. Prep. Proced. Int. 42: 557-563.   DOI
25 Isailovic, N., Daigo, K., Mantovani, A. and Selmi, C. (2015) Interleukin-17 and innate immunity in infections and chronic inflammation. J. Autoimmun. 60: 1-11.   DOI
26 Somasundaram, V., Gilmore, A. C., Basudhar, D., Palmieri, E. M., Scheiblin, D. A., Heinz, W. F., Cheng, R. Y. S., Ridnour, L. R., Altan-Bonnet, G., Lockett, S. J., McVica, D. W. and Wink, D. A. (2020) Inducible nitric oxide synthase-derived extracellular nitric oxide flux regulates proinflammatory responses at the single cell level. Redox Biol. 28: 101354.   DOI
27 Singh, G. and Triadafilopoulos, G. (1999) Epidemiology of NSAID induced gastrointestinal complications. J. Rheumatol. Suppl. 56:18-24.
28 Sergent, T., Kohnen, S., Jourez, B., Beauve, C., Schneider, Y. J. and Vincke, C. (2014) Characterization of black locust (Robinia pseudoacacia L. heartwood extractives: identification of resveratrol and piceatannol. Wood Sci. Technol. 48: 1005-1017.   DOI