Browse > Article
http://dx.doi.org/10.22889/KJP.2021.52.4.257

In vitro Anti-inflammatory Activities and Phenolic Acid Analysis of Tree Sprout Extracts  

Kim, Juree (Department of Plant Science and Technology, Chung-Ang University)
Nguyen, Quynh Nhu (Department of Preventive Medicine, Gachon University)
Shin, Hanna (Department of Forest Bioresources, National Institute of Forest Science)
Kang, Ki Sung (Department of Preventive Medicine, Gachon University)
Lee, Sanghyun (Department of Plant Science and Technology, Chung-Ang University)
Publication Information
Korean Journal of Pharmacognosy / v.52, no.4, 2021 , pp. 257-266 More about this Journal
Abstract
This study evaluated several in vitro activities including the preliminary assessment of the anti-cancer, anti-inflammatory, and anti-diabetic effects of tree sprout extracts. Chlorogenic, caffeic, and p-coumaric acid contents in tree sprouts were analyzed using high-performance liquid chromatography and an ultraviolet detector. Among the studied tree sprout extracts, the ethanol (EtOH) extract of Rhus verniciflua exhibited the most potent anti-cancer effect by suppressing the cell viability of a human gastric adenocarcinoma cell line, with an IC50 of 7.06 ㎍/mL. The EtOH extract of Morus alba (MAB) inhibited the secretion of nitric oxide (NO) at a concentration of 100 ㎍/mL, with an IC50 of 83.44 ㎍/mL. Moreover, the EtOH extract of Securinega suffruticosa inhibited NO secretion with the lowest IC50 of 54.42 ㎍/mL. The EtOH extract of Fraxinus mandschurica was the only extract with effective α-glucosidase inhibitory activity. The total content of chlorogenic, caffeic, and p-coumaric acids was the highest in MAB (14.63 mg/g ext.). In conclusion, the beneficial activities of the tree sprout extracts with high phenolic acid content were generally high. Our results provide a theoretical basis for the development of health-promoting supplements and functional foods.
Keywords
Anti-cancer; Anti-inflammatory; Anti-diabetes; Phenolic acid; Tree sprout;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Stojkovic, D., Petrovic, J., Sokovic, M., Glamoclija, J., Kukic-Markovic, J. and Petrovic, S. (2013) In situ antioxidant and antimicrobial activities of naturally occurring caffeic acid, p-coumaric acid and rutin, using food systems. J. Sci. Food Agric. 93: 3205-3208.   DOI
2 Fujioka, K. and Shibamoto, T. (2008) Chlorogenic acid and caffeine contents in various commercial brewed coffees. Food Chem. 106: 217-221.   DOI
3 Lee, S. H., Choi, W. C., Kim, K. S., Park, J. W., Lee, S. H. and Yoon, S. W. (2010) Shrinkage of gastric cancer in an elderly patient who received Rhus verniciflua Stokes extract. J. Altern. Complement. Med. 16: 497-500.   DOI
4 Shahidi, F. (2004) Functional foods: Their role in health promotion and disease prevention. J. Food Sci. 69: R146-R149.   DOI
5 Suryanti, V., Marliyana, S. D. and Putri, H. E. (2016) Effect of germination on antioxidant activity, total phenolics, β-carotene, ascorbic acid and α-tocopherol contents of lead tree sprouts (Leucaena leucocephala (lmk.) de Wit). Int. Food Res. J. 23.
6 Wen, D., Li, C., Di, H., Liao, Y. and Liu, H. (2005) A universal HPLC method for the determination of phenolic acids in compound herbal medicines. J. Agric. Food Chem. 53: 6624-6629.   DOI
7 Shahrzad, S. and Bitsch, I. (1996) Determination of some pharmacologically active phenolic acids in juices by highperformance liquid chromatography. J. Chromatogr. A 741: 223-231.   DOI
8 Kaurinovic, B. and Vastag, D (2019) Flavonoids and phenolic acids as potential natural antioxidants. In Antioxidants, 1-20, IntechOpen London, UK.
9 Kim, J. H., Shin, Y. C. and Ko, S. G. (2014) Integrating traditional medicine into modern inflammatory diseases care: Multitargeting by Rhus verniciflua Stokes. Mediators Inflamm. 2014: 154561.   DOI
10 Lee, S., Choi, W. and Yoon, S. (2009) Impact of standardized Rhus verniciflua Stokes extract as complementary therapy on metastatic colorectal cancer: A Korean single-center experience. Integr. Cancer Ther. 8: 148-152.   DOI
11 Lee, S., Kim, K., Jung, H., Lee, S., Cheon, S., Kim, S., Eo, W. and Choi, W. (2011) Efficacy and safety of standardized allergen-removed Rhus verniciflua Stokes extract in patients with advanced or metastatic pancreatic cancer: a Korean single-center experience. Oncol. 81: 312-318.   DOI
12 Lee, J., Chae, J., Lee, S., Kim, K., Eo, W., Kim, S., Choi, W. and Cheon, S. H. (2013) The efficacy and safety of standardized allergen-removed Rhus verniciflua extract as maintenance therapy after first-line chemotherapy in patients with advanced non-small cell lung cancer. Am. J. Chinese Med. 41: 773-787.   DOI
13 Team, R. C. (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
14 Luceri, C., Giannini, L., Lodovici, M., Antonucci, E., Abbate, R., Masini, E. and Dolara, P. (2007) 𝜌-Coumaric acid, a common dietary phenol, inhibits platelet activity in vitro and in vivo. Br. J. Nutr. 97: 458-463.   DOI
15 Olthof, M. R., Hollman, P. C. and Katan, M. B. (2001) Chlorogenic acid and caffeic acid are absorbed in humans. J. Nutr. 131: 66-71.   DOI
16 Granados-Guzman, G., Castro-Rios, R., Waksman de Torres, N., Salazar-Aranda, R. (2018) Optimization and validation of a microscale in vitro method to assess α-glucosidase inhibition activity. Curr. Anal. Chem. 14: 458-464.   DOI
17 Lee, D. S., Jeong, G. S., Li, B., Park, H. and Kim, Y. C. (2010) Anti-inflammatory effects of sulfuretin from Rhus verniciflua Stokes via the induction of heme oxygenase-1 expression in murine macrophages. Int. Immunopharmacol. 10: 850-858.   DOI
18 Lee, S. K., Jung, H. S., Eo, W. K., Lee, S. Y., Kim, S. H. and Shim, B. S. (2010) Rhus verniciflua Stokes extract as a potential option for treatment of metastatic renal cell carcinoma: report of two cases. Ann. Oncol. 21: 1383-1385.   DOI
19 Guo, S., Zhao, H., Ma, Z., Zhang, S., Li, M., Zheng, Z., Ren, X., Ho, C. T. and Bai, N. (2020). Anti-obesity and gut microbiota modulation effect of secoiridoid-enriched extract from Fraxinus mandshurica seeds on high-fat diet-fed mice. Molecules 25: 4001.   DOI
20 Kim, H. R., Kim, K. S., Jung, H. S., Choi, W. C., Eo, W. K. and Cheon, S. H. (2010) A case of recurred hepatocellular carcinoma refractory to doxorubicin after liver transplantation showing response to herbal medicine product, Rhus verniciflua stokes extract. Integr. Cancer Ther. 9: 100-104.   DOI
21 Kim, J. H., Kim, H. P., Jung, C. H., Hong, M. H., Hong, M. C., Bae, H. S., Lee, S. D., Park, S. Y., Park, J. H., and Ko, S. G. (2006) Inhibition of cell cycle progression via p27Kip1 upregulation and apoptosis induction by an ethanol extract of Rhus verniciflua Stokes in AGS gastric cancer cells. Int. J. Mol. Med. 18: 201-208.
22 Kalantari, H., Aghel, N. and Bayati, M. (2009) Hepatoprotective effect of Morus alba L. in carbon tetrachloride-induced hepatotoxicity in mice. Saudi Pharm. J. 17: 90-94.
23 Nikavar, B. and Mousazadeh, G. (2009) Influence of three Morus species extracts on α-amylase activity. Iran. J. Pharm. Sci. 8: 115-119.
24 Chon, S. U., Kim, Y. M., Park, Y. J., Heo, B. G., Park, Y. S. and Gorinstein, S. (2009) Antioxidant and antiproliferative effects of methanol extracts from raw and fermented parts of mulberry plant (Morus alba L.). Eur. Food Res. Technol. 230: 231-237.   DOI
25 Sj, A. R. and Mahmood, R. (2012) Anthelmintic and antimicrobial activities in some species of mulberry. Int. J. Pharm. Pharm. Sci. 4: 335-338.
26 Venkatachalam, V. V., Kannan, K. and Ganesh, S. (2009) Preliminary immunomodulatory activities of aqueous extract of Morus alba Linn. Int. J. Chem. Sci. 7: 2233-2238.
27 Nematbakhsh, M., Hajhashemi, V., Ghannadi, A., Talebi, A. and Nikahd, M. (2013) Protective effects of the Morus alba L. leaf extracts on cisplatin-induced nephrotoxicity in rat. Res. Pharm. Sci. 8: 71.
28 Eo, H. J., Park, J. H., Park, G. H., Lee, M. H., Lee, J. R., Koo, J. S. and Jeong, J. B. (2014) Anti-inflammatory and anti-cancer activity of mulberry (Morus alba L.) root bark. BMC Complement Altern. Med. 14: 1-9.   DOI
29 Kheir, M. M., Wang, Y., Hua, L., Hu, J., Li, L., Lei, F. and Du, L. (2010) Acute toxicity of berberine and its correlation with the blood concentration in mice. Food Chem. Toxicol. 48:1105-1110.   DOI
30 Kim, J. S., Kwon, Y. S., Chun, W. J., Kim, T. Y., Sun, J., Yu, C. Y. and Kim, M. J. (2010). Rhus verniciflua Stokes flavonoid extracts have anti-oxidant, anti-microbial and α-glucosidase inhibitory effect. Food Chem. 120: 539-543.   DOI
31 Lim, H. J., Jin, H. G., Woo, E. R., Lee, S. K. and Kim, H. P. (2013) The root barks of Morus alba and the flavonoid constituents inhibit airway inflammation. J. Ethnopharmacol. 149: 169-175.   DOI
32 Choi, H. S., Kim, M. K., Choi, Y. K., Shin, Y. C., Cho, S. G. and Ko, S. G. (2016). Rhus verniciflua Stokes (RVS) and butein induce apoptosis of paclitaxel-resistant SKOV-3/PAX ovarian cancer cells through inhibition of AKT phosphorylation. BMC Complement Altern. Med. 16: 1-7.   DOI
33 Lee, K. W., Chung, K. S., Seo, J. H., Yim, S. V., Park, H. J., Choi, J. H. and Lee, K. T. (2012). Sulfuretin from heartwood of Rhus verniciflua triggers apoptosis through activation of Fas, Caspase-8, and the mitochondrial death pathway in HL60 human leukemia cells. J. Cell. Biochem. 113: 2835-2844.   DOI
34 Tsurufuji, S., Kurihara, A. and Ojima, F. (1984) Mechanisms of anti-inflammatory action of dexamethasone: Blockade by hydrocortisone mesylate and actinomycin D of the inhibitory effect of dexamethasone on leukocyte infiltration in inflammatory sites. J. Pharmacol. Exp. Ther. 229: 237-243.
35 Devi, B., Sharma, N., Kumar, D. and Jeet, K. (2013) Morus alba Linn: A phytopharmacological review. Int. J. Pharm. Pharm. Sci. 5: 14-18.
36 Lee, S. H., Kim, K. S., Choi, W. C. and Yoon, S. W. (2009) Successful outcome of advanced pulmonary adenocarcinoma with malignant pleural effusion by the standardized rhus verniciflua stokes extract: A case study. Explore (NY) 5: 242-244.   DOI
37 Wang, L. and Sweet, D. H. (2012) Potential for food-drug interactions by dietary phenolic acids on human organic anion transporters 1 (SLC22A6), 3 (SLC22A8), and 4 (SLC22A11). Biochem. Pharmacol. 84: 1088-1095.   DOI