Browse > Article
http://dx.doi.org/10.22889/KJP.2021.52.4.212

Chemical Constituents of Fatsia japonica Stem  

Lee, Hwan (College of Pharmacy, Chosun University)
Woo, Eun-Rhan (College of Pharmacy, Chosun University)
Lee, Dong-Sung (College of Pharmacy, Chosun University)
Publication Information
Korean Journal of Pharmacognosy / v.52, no.4, 2021 , pp. 212-218 More about this Journal
Abstract
Fatsia japonica is grown wild to Eastern Asia, including Korea, Japan, and Taiwan and it is known as ornamental plant, and it is also known that pharmacological action. In this study, we have selected the stem of F. japonica with consideration about biological activities and amount of yield. In addition, four compounds (1-4) were isolated from the stem of F. japonica. Extensive spectroscopic and chemical studies established the structures of these compounds as maltose (1), begoniifolide A (2), leiyemudanoside B (3), leonticin F (4). All of the compounds were investigated for their anti-inflammatory, anti-neuroinflammatory, and neuro-protective effects on RAW264.7, BV2, and HT22 cells. However, among four compounds, there were no effects by maltose (1), begoniifolide A (2), leiyemudanoside B (3), leonticin F (4) on the anti-inflammatory, anti-neuroinflammatory, and neuro-protective action. This is the first report on the isolation of maltose (1), begoniifolide A (2), leiyemudanoside B (3), leonticin F (4) from the stem of F. japonica. Begoniifolide A (2), leiyemudanoside B (3), leonticin F (4) were isolated for the first time from this plant. It might be necessary to continue the further studies to find the biological active compounds isolated from the stem of F. japonica.
Keywords
Fatsia japonica; stem; Begoniifolide A; Leiyemudanoside B; Leonticin F;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Yuan, M. M., Wang, X., Wu, X., Zeng, S., Zou, C. S., Zhong, R. J. and Zhou, G. P. (2020) Chemical constituents of n-butanol extract part of Akebia trifoliata Caulis. Zhongguo Shiyan Fangjixue Zazhi 24: 139-146.
2 Dong, X. X., Wang, Y. and Qin, Z. H. (2009) Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta. Pharmacologica. Sinica. 30: 379-387.   DOI
3 Lu, S., Dong, S., Xu, D., Duan, J., Li, G., Guo, Y., Kuang, H. and Wang, Q. (2017) Spectrum-effect relationships between fingerprints of Caulophyllum robustum Maxim and inhabited pro-inflammation cytokine effects. Molecules 22: 1826.   DOI
4 LI, G. Y. (2015) Saponin constituents from roots and rhizomes of Caulophyllum robustum. Chin. Tradit. Herb. Drugs. 24: 1431-1436.
5 Coyle, J. T. and Puttfarcken, P. (1993) Oxidative stress, glutamate, and neurodegenerative disorders. Science 262: 689-695.   DOI
6 Wegner. C., Hamburger. M., Kunert. O. and Haslinger. E. (2000) Tensioactive compounds from the aquatic plant Ranunculus fluitans L. (Ranunculaceae). Helv. Chim. Acta. 83: 1454-1464.   DOI
7 Bekiroglu, S., Kenne, L. and Sandstrom, C. (2003) 1H NMR studies of maltose, maltoheptaose, alpha-, beta-, and gammacyclodextrins, and complexes in aqueous solutions with hydroxy protons as structural probes. J. Org. Chem. 68: 1671-1678.   DOI
8 Roslund, M. U., Tahtinen, P., Niemitz, M. and Sjoholm, R. (2008) Complete assignments of the (1)H and (13)C chemical shifts and J(H,H) coupling constants in NMR spectra of D-glucopyranose and all D-glucopyranosyl-D-glucopyranosides. Carbohydr. Res. 343: 101-112.   DOI
9 Cioffi, G., Dal, P. F., Vassallo, A., Venturella, F., Caprariis, P. D., Simone F. D. and Tommasi, N. D. (2008) Antiproliferative oleanane saponins from Meryta denhamii. J. Nat. Prod. 71: 1000-1004.   DOI
10 Li, G., Zhang, Y., Yang, B., Xia, Y., Zhang, Y., Lu, S. and Kuang, H. (2010) Leiyemudanosides A-C, three new bidesmosidic triterpenoid saponins from the roots of Caulophyllum robustum. Fitoterapia 81: 200-204.   DOI
11 Chen, M., Wu, W. W., Nanz, D. and Sticher, O. (1997) Leonticins D-H, five triterpene saponins from Leontice kiangnanensis. Phytochemistry 44: 497-504.   DOI
12 Wei, Q., Qiu, Z., Xu, F., Li, Q. R. and Yin, H. (2015) Chemical components from leaves of Fatsia japonica and their antitumor activities in vitro. Zhong Yao Cai 38: 745-750.
13 Li, X. J., Tang, S. Q., Huang, H., Luo, J., Zhang, X. D., Yook, C. S., Whang, W. K., Kim, Y. C. and Liu, X. Q. (2021) Acanthopanax henryi: Review of botany, phytochemistry and pharmacology. Molecules 26: 2215.   DOI
14 Ko, H. J., Lee, J. H., Kim, Y. S., Lee, J. H. and Woo, E. R. (2015) A New Triterpene glycoside from the stems of Akebia quinata. Bull. Korean Chem. Soc. 36: 356-359.   DOI
15 Grishkovets, V. I., Sobolev, E. A., Shashkov, A. S. and Chirva. V. Y. (2000) Triterpenoid glycosides of Fatsia japonica. II. Isolation and structure of glycosides from the leaves. Chem. Nat. Compd. 36: 501-505.   DOI
16 Aoki, T., Tanio, Y., Suga, T. (1976) Triterpenoid saponins from Fatsia japonica. Phytochcmistry 15: 781-784.   DOI
17 Hanisch, U.K. and Kettenmann, H. (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat. Neurosci. 10: 1387-1394.   DOI
18 Lee, S. H., Kim, S. Y., Kim, D. W., Jang, S. H., Lim, S. S., Kwon, H. J., Kang, T. C., Won, M. H., Kang, I. J., Lee, K. S., Park, J., Eum, W. S. and Choi, S. Y. (2008) Active component of Fatsia japonica enhances the transduction efficiency of Tat-SOD fusion protein both in vitro and in vivo. J. Microbiol. Biotechnol. 9: 1613-1619.
19 Lee, H. J., Lee, H. J., Yun, G. H., Lee, O. G. and Kang, H. Y. (2006) Fatsia japonica extract components and physiological activity. J. Korean Wood Sci. Technol. 2006: 272-273.
20 Yu, S., Ye, X., Xin, W., Xu, K., Lian, X. Y. and Zhang, Z. (2014) Fatsioside A, a rare baccharane-type glycoside inhibiting the growth of glioma cells from the fruits of Fatsia japonica. Planta Med. 80: 315-320.   DOI
21 Fraschini, C., Greffe, L., Driguez, H. and Vignon, M. R. (2005) Chemoenzymatic synthesis of 6omega-modified maltooligosaccharides from cyclodextrin derivatives. Carbohydr. Res. 340: 1893-1899.   DOI