Browse > Article
http://dx.doi.org/10.22889/KJP.2021.52.2.118

Estrogenic Activity of Leguminosae Species in Korea using MCF-7 Cells  

Bae, Ji-Yeong (College of Pharmacy, Jeju National University)
Kim, Hye-Jin (College of Pharmacy, Gyeongsang National University)
Park, Woo Sung (College of Pharmacy, Gyeongsang National University)
Ahn, Mi-Jeong (College of Pharmacy, Gyeongsang National University)
Publication Information
Korean Journal of Pharmacognosy / v.52, no.2, 2021 , pp. 118-125 More about this Journal
Abstract
Leguminosae plants are known for its phytoestrogen constituents which play a major role in the prevention of osteoporosis, cancer and heart disease. In this study, the estrogenic activity of 158 samples from 58 species, 3 subspecies and 10 varieties of Leguminosae plants growing in Korea was evaluated. An estrogen, 17β-estradiol was used as a reference compound, and the potency of each sample was expressed in relative efficacy (%) compared to that of the reference by a reporter gene assay using MCF-7 cells. As results, the estrogenic activity of methanolic extracts of Phaseolus vulgaris var. humilis, Sophora flavescens, Lespedeza × robusta, Indigofera pseudotinctoria, Maackia amurensis, Glycine soja, Wisteria floribunda, Robinia pseudoacacia, Astragalus sinicus, Pueraria lobata, Lespedeza maximowiczii var. tomentella, Trifolium repens and Crotalaria sessiliflora showed similar to or higher at 100 ㎍/ml than the positive control at 10 nM. These findings can be a potential evidence for developing estrogen alternatives resolving various types of menopause symptoms with information on proper harvest season and usage plant part. To the best of our knowledge, the estrogenic activity of Lespedeza × robusta, Indigofera pseudotinctoria, Wisteria floribunda, Robinia pseudoacacia and Lespedeza maximowiczii var. tomentella is reported for the first time in this study.
Keywords
Leguminosae plants; MCF-7 cells; Estrogenic activity; Phytoestrogen;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Kang, H.-K., Yi, J.-Y. and Song, H.-S. (2014) Germination characteristics and maturity by production time of Chamaecrista nomame, Lespedeza cuneata and Lespedeza bicolor seed in Fabaceae plant. Korean J. Plant Res. 27: 359-364.   DOI
2 Lapcik, O., Hampl, R., Hill, M., Wahala, K., Maharik, N. A. and Adlercreutz. H. (1998) Radioimmunoassay of free genistein in human serum. J. Steroid Biochem. Mol. Biol. 64: 261-268.   DOI
3 Lee, C. M., Kang, S. C., Oh, J. S., Choi, H., Li, X. M., Lee, J. H., Lee, M. H., Choung, E. S., Kwak, J. H. and Zee, O. P. (2006) In vitro screening of medicinal plants with estrogen receptor modulating activity. Kor. J. Pharmacog. 37: 21-27.
4 Yoo, H. H., Kim, T., Ahn, S., Kim, Y. J., Kim, H. Y., Piao, X. L. and Park, J. H. (2005) Evaluation of the estrogenic activity of Leguminosae plants. Biol. Pharm. Bull. 28: 538-540.   DOI
5 Kim, J. D., Kim, S. G. and Kwon, C. H. (2004) Grassland and forages: Comparison of forage yield and quality of forage legume. J. Anim. Sci. & Technol. 46: 437-442.   DOI
6 Tanwar, A. K., Dhiman, N., Kumar, A. and Jaitak, V. (2021) Engagement of phytoestrogens in breast cancer suppression: Structural classification and mechanistic approach. Eur. J. Med. Chem. 213: 113037.   DOI
7 Cazzaniga, M. and Bonanni, B. (2012) Breast cancer chemoprevention: old and new approaches. J. Biomed. Biotechnol. 2012: 985620.   DOI
8 Shim, M., Bae, J. Y., Lee, Y. J. and Ahn, M. J. (2014) Tectoridin from Maackia amurensis modulates both estrogen and thyroid receptors. Phytomedicine. 21: 602-606.   DOI
9 Overk, C. R., Yao, P., Chen, S., Deng, S., Imai, A., Main, M., Schinkovitz, A., Farnsworth, N. R., Pauli, G. F. and Bolton, J. L. (2008) High-content screening and mechanism-based evaluation of estrogenic botanical extracts. Comb. Chem. High Throughput Screen. 11: 283-293.   DOI
10 Thongon, N., Boonmuen, N., Suksen, K., Wichit, P., Chairoungdua, A., Tuchinda, P., Suksamrarn, A., Winuthayanon, W. and Piyachaturawat, P. (2017) Selective estrogen receptor modulator (SERM)-like activities of diarylheptanoid, a phytoestrogen from Curcuma comosa, in breast cancer cells, preosteoblast cells, and rat uterine tissues. J. Agric. Food Chem. 65: 3490-3496.   DOI
11 Lee, M., Park, S. J., Moon, Y. J., In, G., Kim, J. H., Kim, S. W., Lee, M. H. and Kim, O. K. (2020) Combination of Sargassum fusiforme and Pueraria lobata extracts alleviates postmenopausal symptoms in ovariectomized rats. J. Med. Food 23: 735-744.   DOI
12 Kang, S. C., Lee, C. M., Choi, H., Lee, J. H., Oh, J. S., Kwak, J. H. and Zee, O. P. (2006) Evaluation of oriental medicinal herbs for estrogenic and antiproliferative activities. Phytother. Res. 20: 1017-1019.   DOI
13 An De Naeyer, A. D., Berghe, W. V., Pocock, V., Milligan, S., Haegeman, G. and Keukeleire, D. D. (2004) Estrogenic and anticarcinogenic properties of kurarinone, a lavandulyl flavanone from the roots of Sophora flavescens. J. Nat. Prod. 67: 1829-1832.   DOI
14 Pablo, I. H. and Michael, W. (2005) Binding of flavonoids from Sophora flavescens to the rat uterine estrogen receptor. Planta Med. 71: 1065-1068.   DOI
15 Miksicek, R. J. (1994) Interaction of naturally occurring nonsteroidal estrogens with expressed recombinant human estrogen receptor. J. Steroid Biochem. Mol. Biol. 49: 153-160.   DOI
16 Wada, H. (1963) Estrogenic activity in fresh and dried forages. Japanese Journal Zootechnical Science 34: 248-252.
17 Boue, S. M., Burow, M. E., Wiese, T. E., Shih, B. Y., Elliott, S., Carter-Wientjes, C. H., McLachlan, J. A. and Bhatnagar, D. (2011) Estrogenic and antiestrogenic activities of phytoalexins from red kidney bean (Phaseolus vulgaris L.). J. Agric. Food Chem. 59: 112-120.   DOI
18 De Naeyer, A., Vanden Berghe, W., Pocock, V., Milligan, S., Haegeman, G. and De Keukeleire, D. (2004) Estrogenic and anticarcinogenic properties of kurarinone, a lavandulyl flavanone from the roots of Sophora flavescens. J. Nat. Prod. 67: 1829-1832.   DOI
19 Kareva, E., Tikhonov, D., Mironov, S., Fedoreyev, S., Kulesh, N. and Shimanovskii, N. (2019) Binding constants of Maackia amurensis whole extract and its separate flavanoids to estradiol receptors. Pharm. Chem. J. 52: 855-589.   DOI
20 Yuliawati, D., Astuti, W. W. and Yuniarti, F. (2020) Effects of black soy phytoestrogens (Glycine soja) on elevated levels of estradiol in rat blood (Rattus norvegicus) ovariectomy. Nus. Biosci. 12: 55-58.
21 Kim, S.-J., Park, C., Kim, H.-G., Shin, W.-C. and Choe, S.-Y. (2004) A study on the estrogenicity of Korean arrowroot (Pueraria thunbergiana). J. Korean Soc. Food Sci. Nutr. 33: 16-21.   DOI
22 Ahn, S. Y., Jo, M. S., Lee, D., Baek, S. E., Baek, J., Yu, J. S., Jo, J., Yun, H., Kang, K. S., Yoo, J. E. and Kim, K. H. (2019) Dual effects of isoflavonoids from Pueraria lobata roots on estrogenic activity and anti-proliferation of MCF-7 human breast carcinoma cells. Bioorg. Chem. 83: 135-144.   DOI
23 Shin, J. E., Bae, E. A., Lee, Y. C., Ma, J. Y. and Kim, D. H. (2006) Estrogenic effect of main components kakkalide and tectoridin of Puerariae Flos and their metabolites. Biol. Pharm. Bull. 29: 1202-1206.   DOI
24 Mun'im, A., Isoda, H., Seki, M., Negishi, O. and Ozawa, T. (2003) Estrogenic and acetylcholinesterase-enhancement activity of a new isoflavone, 7,2',4'-trihydroxyisoflavone-4'-O-β-D-glucopyranoside from Crotalaria sessililflora. Cytotechnology 43: 127-134.   DOI
25 Miksicek, R. J. (1993) Commonly occurring plant flavonoids have estrogenic activity. Mol. Pharmacol. 44: 37-43.
26 Soto, A. M., Sonnenschein, C., Chung, K. L., Fernandez, M. F., Olea, N. and Serrano, F. O. (1995) The E-SCREEN assay as a tool to identify estrogens: an update on estrogenic environmental pollutants. Environ. Health Perspect. 103(Suppl 7): 113-122.
27 Gea, M., Toso, A. and Schiliro, T. (2020) Estrogenic activity of biological samples as a biomarker. Sci. Total Environ. 740:140050.   DOI
28 Kuiper, G. G., Lemmen, J. G., Carlsson, B., Corton, J. C., Safe, S. H., van der Saag, P. T., van der Burg, B. and Gustafsson, J. A. (1998) Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology 139: 4252-4263.   DOI
29 Zhang, C. Z., Wang, S. X., Zhang, Y., Chen, J. P. and Liang, X. M. (2005) In vitro estrogenic activities of Chinese medicinal plants traditionally used for the management of menopausal symptoms. J. Ethnopharmacol. 98: 295-300.   DOI
30 Gaido, K. W., Leonard, L. S., Lovell, S., Gould, J. C., Babai, D., Portier, C. J. and McDonnell, D. P. (1997) Evaluation of chemicals with endocrine modulating activity in a yeastbased steroid hormone receptor gene transcription assay. Toxicol. Appl. Pharmacol. 143: 205-212.   DOI
31 Kim, I. G., Kang, S. C., Kim, K. C., Choung, E. S. and Zee, O. P. (2008) Screening of estrogenic and antiestrogenic activities from medicinal plants. Environ. Toxicol. Pharmacol. 25: 75-82.   DOI
32 Reel, J. R., Lamb IV, J. C. and Neal, B. H. (1996) Survey and assessment of mammalian estrogen biological assays for hazard characterization. Fundam. Appl. Toxicol. 34: 288-305.   DOI