Browse > Article
http://dx.doi.org/10.22889/KJP.2020.51.4.291

HPLC/UV Quantification of (+)-Catechin in Filipendula glaberrima from Different Regions and Flowering Stages  

Lee, Hak-Dong (Department of Plant Science and Technology, Chung-Ang University)
Lee, Yunji (Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science)
Kim, Hoon (Skin Biotechnology Center, Kyunghee University)
Kim, Hangeun (Research and Development Center, Skin Biotechnology Center Inc.)
Park, Chun-Gun (Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science)
Lee, Sanghyun (Department of Plant Science and Technology, Chung-Ang University)
Publication Information
Korean Journal of Pharmacognosy / v.51, no.4, 2020 , pp. 291-296 More about this Journal
Abstract
Filipendula glaberrima (FG) is a plant endemic to South Korea. It is economically important as a food source and used as a medicine in treating ailments. Filipendula flowers are characterized by the presence of several polyphenolic constituents. The aim of this study is to determine the content of (+)-catechin in Filipendula glaberrima collected from different regions at different flowering stages. High-performance liquid chromatography with a gradient elution system (0.5% acetic acid in water : acetonitrile = 95 : 5 to 0 : 100 for 35 min) was used. A reverse-phase INNO column with UV detection at 278 nm was employed. The results revealed that F. glaberrima from Mt. Odae has the highest (+)-catechin content (10.600 mg/g). Furthermore, its content was the lowest in samples collected during the pre-flowering period and the highest at the early-flowering stage. This study provides a basis in establishing the optimal period and the best region for collecting F. glaberrima with maximized (+)-catechin yield.
Keywords
(+)-Catechin; Content analysis; Filipendula glaberrima; HPLC/UV;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Jennifer, L. D., Vanessa, C., Manuel, O., Karen, A. C., Bryan, B. G. and Gary, W. (2006). (+)-Catechin is more bioavailable than (-)-catechin: Relevance to the bioavailability of catechin from cocoa. Free Radic. Res. 40: 1029-1034.   DOI
2 Skrzydlewska, E., Ostrowska, J., Farbiszewski, R. and Michalak, K. (2002). Protective effect of green tea against lipid peroxidation in the rat liver, blood serum and the brain. Phytomed. 9: 232-238.   DOI
3 Yokozawa, T., Nakagawa, T. and Kitani, K. (2002). Antioxidative activity of green tea polyphenol in cholesterol-fed rats. J. Agric. Food Chem. 50: 3549-3552.   DOI
4 Rahman, I., Biswas, S. K. and Kirkham, P. A. (2006). Regulation of inflammation and redox signaling by dietary polyphenols. Biochem. Pharmacol. 72: 1439-1452.   DOI
5 Ferrándiz, M. L. and Alcaraz, M. J. (1991). Anti-inflammatory activity and inhibition of arachidonic acid metabolism by flavonoids. Agents Actions. 32: 283-288.   DOI
6 Sabu, M. C., Smitha, K. and Kuttan, R. (2002). Anti-diabetic activity of green tea polyphenols and their role in reducing oxidative stress in experimental diabetes. J. Ethnopharmacol. 83: 109-116.   DOI
7 Hollman, P. C. and Arts, I. C. (2000). Flavonols, flavones and flavanols-nature, occurrence and dietary burden. J. Sci. Food Agric. 80: 1081-1093.   DOI
8 Yoon, P. S. (1989). Hortus koreana. JisikSanupSa Publishing, Korea. p. 261-870.
9 Kim, K. -J. and Jung, Y. H. (1986) Monographic study of the endemic plants in Korea, V. Taxonomy and interspecific relationships of the genus Filipendula. Kor. J. Bot. 29: 19-40.
10 Yook, C. S. (1990). Colored Medicinal Plants of Korea. Academy Publishing Co., Korea. pp. 220-409.
11 Barros, L., Cabrita, L., Boas, M. V., Carvalho, A. M. and Ferreira, I. C. F. R. (2011). Chemical, biochemical and electrochemical assays to evaluate phytochemicals and antioxidant activity of wild plants. Food Chem. 127: 1600-1608.   DOI
12 Trouillas, P., Calliste, C., Allais, D., Simon, A., Marfak, A., Delage, C. and Duroux, J. (2003). Antioxidant, anti-inflammatory and antiproliferative properties of sixteen water plant extracts used in the Limousin countryside as herbal teas. Food Chem. 80: 399-407.   DOI
13 Gorbacheva, A. V., Aksinenko, S. G. and Pashinskii, V. G. (2005). Meadowsweet in the Phytotherapy of the Inflammatory Process [in Russian]. Tomsk State Pedagogic University Press, Tomsk.
14 Harbourne, N., Marete, E., Jacquier, J. C. and Riordan, D. O. (2013). Stability of phytochemicals as sources of anti-inflammatory nutraceuticals in beverages - A review. Food Res. Int. 50: 480-486.   DOI
15 Katanic, J., Tatjana, B., Nevena, S., Vladimir, M., Milan, M., Samo, K. and Miroslav, M. V. (2015). Bioactivity, stability and phenolic characterization of Filipendula ulmaria (L.) Maxim. Food Funct. 6: 1164-1175.   DOI
16 Okuda, T., Yoshida, T., Hatano, T., Iwasaki, M., Kubo, M., Orime, T., Yoshizaki, M. and Naruhashi, N. (1992). Hydrolyzable tannins as chemotaxonomic markers in the Rosaceae. Phytochemistry. 31: 3091-3096.   DOI
17 Vogl, S., Picker, P., Mihaly-Bison, J., Fakhrudin, N., Atanasov, A. G., Heiss, E. H., Wawrosch, C., Reznicek, G., Dirsch, V. M., Saukel, J. and Kopp, B. (2013). Ethnopharmacological in vitro studies on Austria's folk medicine - An unexplored lore in vitro anti-inflammatory activities of 71 Austrian traditional herbal drugs. J. Ethnopharmacol. 149: 750-771.   DOI
18 Katanic, J., Matic, S., Pferschy-Wenzig, E. -M., Kretschmer, N., Boroja, T., Mihailovic, V. Stankovic, V., Stankovic, N., Mladenovic, M., Stanic, S., Mihailovic, M. and Bauer, R. (2017). Filipendula ulmaria extracts attenuate cisplatin-induced liver and kidney oxidative stress in rats: In vivo investigation and LC-MS analysis. Food Chem. Toxicol. 99: 86-102.   DOI
19 Radulovic, N., Misic, M., Aleksic, J., Dokovi, D., Palic, R. and Stojanovic, G. (2007). Antimicrobial synergism and antagonism of salicylaldehyde in Filipendula vulgaris essential oil. Fitoterapia 78: 565-570.   DOI
20 Gupta, R. K., Al-Shafi, S. M. K., Layden, K. and Haslam, E. (1982). The metabolism of gallic acid and hexahydroxydiphenic acid in plants. Part 2. Esters of (S)-hexahydroxydiphenic acid with D-glucopyranose (4/sup>C1). J. Chem. Soc. Perkin Trans. 1: 2525-2534.
21 Pemp, E., Reznicek, G. and Krenn, L. (2007). Fast quantification of flavonoids in Filipendulae ulmariae flos by HPLC/ESI-MS using a nonporous stationary phase. J. Anal. Chem. 62: 669-673.   DOI
22 Imbrea, I. M., Butnariu, M., Nicolin, A. L. and Imbrea, A. F. (2010). Determining antioxidant capacity of extracts of Filipendula vulgaris Moench from south-western Romania. J. Food Agric. Environ. 8: 111-116.
23 Yeo, H., Kim, J. and Chung, B. S. (1992). Phytochemical studies on the constituents of Filipendula glaberrima. Kor. J. Pharmacogn. 23: 121-125.
24 Kassim, M., Achoui, M., Mustafa, M. R., Mohd, M. A. and Yusoff, K. M. (2010). Ellagic acid, phenolic acids, and flavonoids in Malaysian honey extracts demonstrate in vitro anti-inflammatory activity. Nutr. Res. 30: 650-659.   DOI
25 Olennikov, D. N. and Kruglova, M. Yu. (2013). A new quercetin glycoside and other phenolic compounds from the genus Filipendula. Chem. Nat. Compd. 49: 610-616.   DOI
26 Chen, S., Xing, X.-H., Huang, J.-J. and Xu, M.-S. (2011). Enzyme assisted extraction of flavonoids from Ginkgo biloba leaves: Improvement effect of flavonol transglycosylation catalyzed by Penicillium decumbens cellulase. Enzyme Microb. Technol. 48: 100-105.   DOI
27 Ghasemzadeh, A., Jaafar, H. Z. E., Karimi, E. and Rahmat, A. (2014). Optimization of ultrasound assisted extraction of flavonoid compounds and their pharmaceutical activity from curry leaf (Murraya koenigii L.) using response surface methodology. BMC Complement Altern. Med. 14: 318-327.   DOI
28 Dong, P., Pan, L. and Zhang, X. (2017). Hawthorn (Crataegus pinnatifda Bunge) leave flavonoids attenuate atherosclerosis development in apoE knock-out mice. J. Ethnopharmacol. 19: 479-488.   DOI
29 George, S., Ajikumaran Nair, S., Johnson, A. J., Venkataraman, R. and Baby, S. (2015). O-prenylated flavonoid, an anti-diabetes constituent in Melicope lunu-ankenda, J. Ethnopharmacol. 168: 158-163.   DOI
30 Moghaddam, G., Ebrahimi, S. A., Rahbar-Roshandel, N. and Foroumadi, A. (2012). Antiproliferative activity of flavonoids: Influence of the sequential methoxylation state of the flavonoid structure. Phytother. Res. 26: 1023-1028.   DOI
31 Zeng, Q., Zhang, X. and Xu, X. (2013). Antioxidant and anti-complement functions of flavonoids extracted from Penthorum chinense Pursh. Food Funct. 4: 1811-1818.   DOI