Browse > Article
http://dx.doi.org/10.22889/KJP.2020.51.1.041

The Effect of Glucopyranosyldiacylglycerol from Padina arborescens on the Prevention of Hair-Loss  

Kang, Jung-Il (Department of Medicine, School of Medicine, Jeju National University)
Kim, Jungeun (Department of Chemistry & Cosmetics, Jeju National University)
Kim, Sang-Cheol (Department of Medicine, School of Medicine, Jeju National University)
Han, Sang-Chul (Department of Medicine, School of Medicine, Jeju National University)
Lee, Ji-Hyeok (Department of Marine Life Science, Jeju National University)
Lee, Jaehyun (Department of Medicine, School of Medicine, Jeju National University)
Noh, Euijun (Department of Medicine, School of Medicine, Jeju National University)
Jeon, You-Jin (Department of Marine Life Science, Jeju National University)
Yoo, Eun-Sook (Department of Medicine, School of Medicine, Jeju National University)
Kang, Hee-Kyoung (Department of Medicine, School of Medicine, Jeju National University)
Publication Information
Korean Journal of Pharmacognosy / v.51, no.1, 2020 , pp. 41-48 More about this Journal
Abstract
This study was conducted to evaluate the effects of Padina arborescens and 1-O-myristoyl-2-O-oleoyl-3-O-(α-D-glucopyranosyl)-glycerol(MOGG), its active component, on the prevention of hair loss. The P. arborescens extract and MOGG inhibited the activity of 5α-reductase, which converts testosterone to dihydrotestosterone(DHT), a main cause of androgenetic alopecia. When immortalized rat vibrissa dermal papilla cells were treated with MOGG, the proliferation of dermal papilla cells significantly increased. In addition, we found that the P. arborescens extract and MOGG could open the KATP channel, which may contribute to increase hair growth. Furthermore, MOGG promoted PGE2 production in HaCaT cells. The results suggest that MOGG from the P. arborescens extract has the potential to treat alopecia via 5α-reductase inhibition, the proliferation of dermal papilla, the opening of the KATP channel and/or increase of PGE2 production.
Keywords
Padina arborescens; Glucopyranosyldiacylglycerol; Hair-loss; $5{\alpha}$-Reductase; $K_{ATP}$ channel; Dermal papilla cell;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kaufman, K. D., Olsen, E. A., Whiting, D., Savin, R., DeVillez, R., Bergfeld, W., Price, V. H., Van Neste, D., Roberts, J. L., Hordinsky, M., Shapiro, J., Binkowitz, B. and Gormley, G. J. (1998) Finasteride in the treatment of men with androgenetic alopecia. Finasteride Male Pattern Hair Loss Study Group. J. Am. Acad. Dermatol. 39: 578-589.   DOI
2 Sinclair, R. (1998) Male pattern androgenetic alopecia. BMJ. 317: 865-869.   DOI
3 Olsen, E. A., Hordinsky, M., Whiting, D., Stough, D., Hobbs, S., Ellis, M. L., Wilson, T. and Rittmaster, R. S. (2006) The importance of dual 5alpha-reductase inhibition in the treatment of male pattern hair loss: results of a randomized placebo-controlled study of dutasteride versus finasteride. J. Am. Acad. Dermatol. 55: 1014-1023.   DOI
4 Kumar, N., Rungseevijitprapa, W., Narkkhong, N. A., Suttajit, M. and Chaiyasut, C. (2012) $5{\alpha}$-reductase inhibition and hair growth promotion of some Thai plants traditionally used for hair treatment. J. Ethnopharmacol. 139: 765-771.   DOI
5 Murata, K., Noguchi, K., Kondo, M., Onishi, M., Watanabe, N., Okamura, K. and Matsuda, H. (2013) Promotion of hair growth by Rosmarinus officinalis leaf extract. Phytother. Res. 27: 212-217.   DOI
6 Jahoda, C. A., Horne, K. A. and Oliver, R. F. (1984) Induction of hair growth by implantation of cultured dermal papilla cells. Nature 311: 560-562.   DOI
7 Horne, K. A., Jahoda, C. A. and Oliver, R. F. (1986) Whisker growth induced by implantation of cultured vibrissa dermal papilla cells in the adult rat. J. Embryol. Exp. Morphol. 97: 111-124.
8 Sanders, D. A., Fiddes, I., Thompson, D. M., Philpott, M. P., Westgate, G. E. and Kealey, T. (1996) In the absence of streptomycin, minoxidil potentiates the mitogenic effects of fetal calf serum, insulin-like growth factor 1, and platelet-derived growth factor on NIH 3T3 fibroblasts in a K+ channel-dependent fashion. J. Invest. Dermatol. 107: 229-234.   DOI
9 Roenigk, H.H. Jr. (1988) New topical agents for hair growth. Clin Dermatol. 6: 119-121.   DOI
10 Ha, J.H., Shil, P.K., Zhu, P., Gu, L., Li, Q. and Chung, S. (2014) Ocular inflammation and endoplasmic reticulum stress are attenuated by supplementation with grape polyphenols in human retinal pigmented epithelium cells and in C57BL/6 mice. J. Nutr. 144: 799-806.   DOI
11 Botchkarev, V. A. (2003) Molecular mechanisms of chemotherapy-induced hair loss. J. Investig. Dermatol. Symp. Proc. 8: 72-75.   DOI
12 Price, V. H. (1999) Treatment of hair loss. N. Engl. J. Med. 341: 964-973.   DOI
13 Ellis, J. A., Sinclair, R. and Harrap, S. B. (2002) Androgenetic alopecia: pathogenesis and potential for therapy. Expert. Rev. Mol. Med. 4: 1-11.
14 Elliott, K., Stephenson, T. J. and Messenger, A. G. (1999) Differences in hair follicle dermal papilla volume are due to extracellular matrix volume and cell number: implications for the control of hair follicle size and androgen responses. J. Invest. Dermatol. 113: 873-877.   DOI
15 Kaufman, K. D. (2002) Androgens and alopecia. Mol. Cell Endocrinol. 198: 89-95.   DOI
16 Mecklenburg, L., Tobin, D. J., Muller-Rover, S., Handjiski, B., Wendt, G., Peters, E. M., Pohl, S., Moll, I. and Paus, R. (2000) Active hair growth (anagen) is associated with angiogenesis. J. Invest. Dermatol. 114: 909-916.   DOI
17 Batchelor, D. (2001) Hair and cancer chemotherapy: consequences and nursing care-a literature study. Eur. J. Cancer Care(Engl) 10: 147-163.   DOI
18 Kaufman, K. D. and Dawber, R. P. (1999) Finasteride, a Type 2 5alpha-reductase inhibitor, in the treatment of men with androgenetic alopecia. Expert Opin. Investig. Drugs 8: 403-415.   DOI
19 Messenger, A. G. and Rundegren, J. (2004) Minoxidil: mechanisms of action on hair growth. Br. J. Dermatol. 150: 186-194.   DOI
20 Han, J. H., Kwon, O. S., Chung, J. H., Cho, K. H., Eun, H. C. and Kim, K. H. (2004) Effect of minoxodil on proliferation and apoptosis in dermal papilla cells of human hair follicle. J. Dermatol. Sci. 34: 91-98.   DOI
21 Hamaoka, H., Minakuchi, K., Miyoshi, H., Arase, S., Chen, C. H. and Nakaya, Y. (1997) Effect of $K^+$ channel openers on $K^+$ channel in cultured human dermal papilla cells. J. Med. Invest. 44: 73-77.
22 Colombe, L., Michelet, J. F. and Bernard, B. A. (2008) Prostanoid receptors in anagen human hair follicles. Exp. Dermatol. 17: 63-72.   DOI
23 Shorter, K., Farjo, N. P., Picksley, S. M. and Randall, V. A. (2008) Human hair follicles contain two forms of ATP-sensitive potassium channels, only one of which is sensitive to minoxidil. FASEB J. 22: 1725-1736.   DOI
24 Colombe, L., Vindrios, A., Michelet, J. F. and Bernard, B. A. (2007) Prostaglandin metabolism in human hair follicle. Exp. Dermatol. 16: 762-769.   DOI
25 Aoki, E., Shibasaki, T. and Kawana, S. (2003) Intermittent foot shock stress prolongs the telogen stage in the hair cycle of mice. Exp. Dermatol. 12: 371-377.   DOI
26 Garza, L. A., Liu, Y., Yang, Z., Alagesan, B., Lawson, J. A., Norberg, S. M., Loy, D. E., Zhao, T., Blatt, H. B., Stanton, D. C., Carrasco, L., Ahluwalia, G., Fischer, S. M., FitzGerald, G. A. and Cotsarelis G. (2012) Prostaglandin D2 inhibits hair growth and is elevated in bald scalp of men with androgenetic alopecia. Sci. Transl. Med. 4: 126ra34.   DOI
27 Sasaki, S., Hozumi, Y. and Kondo, S. (2005) Influence of prostaglandin F2 alpha and its analogues on hair regrowth and follicular melanogenesis in a murine model. Exp. Dermatol. 14: 323-328.   DOI
28 Alkhalifah, A., Alsantali, A., Wang, E., McElwee, K.J. and Shapiro, J. (2010) Alopecia areata update: part I. Clinical picture, histopathology, and pathogenesis. J. Am. Acad. Dermatol. 62: 177-188.   DOI
29 Gilhar, A. and Kalish, R. S. (2006). Alopecia areata: a tissue specific autoimmune disease of the hair follicle. Autoimmun. Rev. 5: 64-69.   DOI
30 Suarez-Farinas, M., Ungar, B., Noda, S., Shroff, A., Mansouri, Y., Fuentes-Duculan, J., Czernik, A., Zheng, X., Estrada, Y. D., Xu, H., Peng, X., Shemer, A., Krueger, J. G., Lebwohl, M.G. and Guttman-Yassky, E. (2015) Alopecia areata profiling shows TH1, TH2,and IL23 cytokine activation without parallel TH17/TH22 skewing. J. Allergy Clin. Immunol. 136: 1277-1287.   DOI
31 Kasumagic-Halilovic, E., Prohic, A. and Cavaljuga, S. (2011) Tumor necrosis factor-alpha in patients with alopecia areata. Indian J. Dermatol. 56: 494-496.   DOI
32 Cotsarelis, G. and Millar, S. E. (2001) Towards a molecular understanding of hair loss and its treatment. Trends. Mol. Med. 7: 293-301.   DOI
33 Wu, W., Hasumi, K., Peng, H., Hu, X., Wang, X. and Bao, B. (2009) Fibrinolytic compounds isolated from a brown alga, Sargassum fulvellum. Mar. Drugs 7: 85-94.   DOI
34 Picard, F., Schulz, T. and Hartmann, R. W. (2002) 5-phenyl substituted 1-methyl-2-pyridones and 40-substituted biphenyl-4-carboxylic acids. Synthesis and evaluation as inhibitors of steroid-$5{\alpha}$-reductase type 1 and 2. Biorg. Med. Chem. 10: 437-448.   DOI
35 Filsell, W., Little, J. C., Stones, A. J., Granger, S. P. and Bayley, S. A. (1994) Transfection of rat dermal papilla cells with a gene encoding a temperature-sensitive polyomavirus large T antigen generates cell lines retaining a differentiated phenotype. J. Cell. Sci. 107: 1761-1772.   DOI
36 Carmichael, J., DeGraff, W. G., Gazdar, A. F., Minna, J. D. and Mitchell, J. B. (1987) Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res. 47: 936-942.
37 Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.   DOI