Browse > Article
http://dx.doi.org/10.22889/KJP.2020.51.1.001

Korean Ginseng and Diabetes: An Insight into Antidiabetic Effects of Korean Ginseng (Panax ginseng C. A. Meyer) in Cultured Cells, Animal Models and Human Studies  

Seo, Seong Ho (R&D Center, REBIO Co., Ltd.)
Park, Gun Kook (R&D Center, REBIO Co., Ltd.)
Park, Jong Dae (R&D Center, REBIO Co., Ltd.)
Publication Information
Korean Journal of Pharmacognosy / v.51, no.1, 2020 , pp. 1-29 More about this Journal
Abstract
Diabetes mellitus, commonly known as diabetes, is a group of metabolic disorders characterized by high blood sugar levels over a prolonged period. Diabetes has been found to show many acute complications such as cardiovascular disease, stroke, chronic kidney disease, foot ulcer and damage to eyes. Korean ginseng (Panax ginseng) has been traditionally known to normalize the functional deficiencies of the lung, spleen and stomach, and thus improve the secretion of body fluids, thereby quenching thirst, suggesting it to be effective in the treatment of diabetes. Experimental studies (in vitro and in vivo) have recently shown that Korean ginseng and its extracts exhibit antidiabetic effects, and also insulin secretion and sensitizing effects related to blood glucose control. Moreover, clinical trials on antidiabetic effects of Korean ginseng have been reported to show blood glucose control, improvement of insulin resistance, reduction of postprandial blood glucose level and improvement of serum lipids (TG, TC, LDL-C). These will be critically examined by means of in vitro studies, cell experiment, animal models and human trials with a focus on understanding of molecular mechanisms.
Keywords
Panax ginseng; Diabetes; Ginsenosides; Antidiabetic effects; Animal studies; Clinical trials; Mechanisms;
Citations & Related Records
Times Cited By KSCI : 18  (Citation Analysis)
연도 인용수 순위
1 Cool, B., Zinker, B., Chiou, W., Kifle, L., Cao, N., Perham, M., Dickinson, R., Adler, A., Gagne, G., Iyengar, R., Zhao, G., Marsh, K., Kym, P., Jung, P., Camp, H. S. and Frevert, E. (2006) Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell Metab. 3: 403-416.   DOI
2 Zhou, G., Myers, R., Li, Y., Chen, Y., Shen, X., Fenyk-Melody, J., Wu, M., Ventre, J., Doebber, T., Fujii, N., Musi, N., Hirshman, M. F., Goodyear L. J. and Moller, D. E. (2001) Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest. 108: 1167-1174.   DOI
3 Madiraju, A. K., Erion, D. M., Rahimi, Y., Zhang, X. M., Braddock, D. T., Albright, R. A., Prigaro B. J, Wood, J. L., Bhanot, S., MacDonald, M. J., Jurczak, M. J., Camporez, J. P., Lee, H. Y., Cline, G. W., Samuel, V. T., Kibbey, R. G. and Shulman, G. I. (2014) Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature 510: 542-546.   DOI
4 Yoon, S. H., Han, E. J., Sung, J. H. and Chung, S. H. (2007) Anti-diabetic effects of compound K versus metformin versus compound K-metformin combination therapy in diabetic db/db mice. Biol. Pharm. Bull. 30: 2196-2200.   DOI
5 Sievenpiper, J. L., Sung, M. K., Di Buono, M., Seung-Lee, K., Nam, K. Y., Arnason, J. T., Leiter, L. A. and Vuksan, V. (2006) Korean red ginseng rootlets decrease acute postprandial glycemia: results from sequential preparation- and dose-finding studies. J. Am. Coll. Nutr. 25: 100-107.   DOI
6 Meng, F., Su, X., Li, W. and Zheng, Y. (2017) Ginsenoside Rb3 strengthens the hypoglycemic effect through AMPK for inhibition of hepatic gluconeogenesis. Exp. Ther. Med. 13: 2551-2557.   DOI
7 Lee, H., Kim, M., Shin, S. S. and Yoon, M. (2014) Ginseng treatment reverses obesity and related disorders by inhibiting angiogenesis in female db/db mice. Journal of Ethnopharmacology 155: 1342-1352.   DOI
8 Lee, H. J., Lee, Y. H., Park, S. K., Kang, E. S., Kim, H. J., Lee, Y. C., Choi, C. S., Park, S. E., Ahn, C. W., Cha, B. S., Lee, K. W., Kim, K. S., Lim, S. K. and Lee, H.C. (2009) Korean red ginseng (Panax ginseng) improves insulin sensitivity and attenuates the development of diabetes in Otsuka Long-Evans Tokushima fatty rats. Metabolism 58: 1170-1177.   DOI
9 Yuan, H. D., Shin, E. J. and Chung, S. H. (2008) Anti-diabetic effect and mechanism of Korean red ginseng in C57BL/KsJ db/db mice. J. Ginseng Res. 32: 187-193.   DOI
10 Jeon, W. J., Oh, J. S., Park, M. S. and Ji, G. E. (2013) Antihyperglycemic effect of fermented ginseng in type 2 diabetes mellitus mouse model. Phytother. Res. 27: 166-172.   DOI
11 Lim, S., Yoon, J. W., Choi, S. H., Cho, B. J., Kim, J. T., Chang, H. S., Park, H. S., Park, K. S., Lee, H. K., Kim, Y. B. and Jang, H. C. (2009) Effect of ginsam, a vinegar extract from Panax ginseng, on body weight and glucose homeostasis in an obese insulin-resistant rat model. Metabolism 58: 8-15.   DOI
12 Cheon, J. M., Kim, D. I. and Kim, K. S. (2015) Insulin sensitivity improvement of fermented Korean red ginseng (Panax ginseng) mediated by insulin resistance hallmarks in old-aged ob/ob mice. J. Ginseng Res. 39: 331-337.   DOI
13 Hong, B. N., Ji, M. G. and Kang, T. H. (2013) The efficacy of red ginseng in type 1 and type 2 diabetes in animals. Evid. Based Complement. Alternat. Med. 2013: 593181.
14 Onoda, T., Li, W. and Koike, K. (2014) Evaluation of 147 kampo prescriptions as novel protein tyrosine phosphatase 1B(PTP1B) inhibitory agent. BMC Complement. Altern. Med. 14: A64.
15 Shang, W., Yang, Y., Zhou, L., Jiang, B., Jin, H. and Chen, M. (2008) Ginsenoside Rb1 stimulates glucose uptake through insulinlike signaling pathway in 3T3-L1 adipocytes. J. Endocrinol. 198: 561-569.   DOI
16 Wei, S., Li, W., Yu, Y., Yao, F., A, L., Lan, X., Guan, F., Zhang, M. and Chen, L. (2015) Ginsenoside Compound K suppresses the hepatic gluconeogenesis via activating adenosine-5'monophosphate kinase: A study in vitro and in vivo. Life Sci. 139: 8-15.   DOI
17 Kim, S. J., Yuan, H. D. and Chung, S. H. (2010) Ginsenoside Rg1 suppresses hepatic glucose production via AMP-activated protein kinase in HepG2 cells. Biol. Pharm. Bull. 33: 325-328.   DOI
18 Chen, L. Q., Cheung, L. S., Feng, L., Tanner, W. and Frommer, W. B. (2015) Transport of sugars. Annu. Rev. Biochem. 84: 865-894.   DOI
19 Shang, W. B., Guo, C., Zhao, J., Yu, X. Z. and Zhang, H. (2014) Ginsenoside Rb1 upregulates expressions of GLUTs to promote glucose consumption in adiopcytes. Acta Pharmacol. Sin. 39: 4448-4452.
20 Lee, O. H., Lee, H. H., Kim, J. H. and Lee, B. Y. (2011) Effect of ginsenosides Rg3 and Re on glucose transport in mature 3T3-L1 adipocytes. Phytother. Res. 25: 768-773.   DOI
21 Chang, T. C., Huang, S. F., Yang, T.C., Chan, F. N., Lin, H. C. and Chang, W. L. (2007) Effect of ginsenosides on glucose uptake in human Caco-2 cells is mediated through altered Na+/glucose cotransporter 1 expression. J. Agric. Food Chem. 55: 1993-1998.   DOI
22 Wood, I. S. and Trayhurn, P. (2003) Glucose transporters (GLUT and SGLT): expanded families of sugar transport proteins. British Journal of Nutrition 89: 3-9.   DOI
23 Tuomilehto, J., Lindstrom, J., Eriksson, J. G., Valle, T. T., Hamalainen, H., Ilanne-Parikka, P., Keinanen-Kiukaanniemi, S., Laakso, M., Louheranta, A., Rastas, M., Salminen, V., Uusitupa, M. and Finnish Diabetes Prevention Study Group. (2001) Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N. Engl. J. Med. 344: 1343-1350.   DOI
24 Vuksan, V., Sung, M. K., Sievenpiper, J. L., Mark, Stavr. P., Jenkins, A. L., Buono, M. D., Lee, K. S., Leiter, L. A., Nam, K. Y., Arnason, J. T., Choi, M. and Naeem, A. (2008) Korean red ginseng(Panax ginseng) improves glucose and insulin regulation in well-controlled, type 2, diabetes: Results of a randomized, double-blind, placebo-controlled study of efficacy and safety. Nut. Metab. Cardiovasc. Dis. 18: 46-56.   DOI
25 Ma, S. W., Benzie, I. F., Chu, T. T., Fok, B. S., Tomlinson, B. and Critchley, L. A. (2008) Effect of Panax ginseng supplementation on biomarkers of glucose tolerance, antioxidant status and oxidative stress in type 2 diabetic subjects: results of a placebo-controlled human intervention trial. Diabetes Obes. Metab. 10: 1125-1127.   DOI
26 Nathan, D. M., Davidson, M. B., DeFronzo, R. A., Heine, R. J., Henry, R. R., Pratley, R. and Zinman, B. (2007) Impaired fasting glucose and impaired glucose tolerance: implications for care. Diabetes Care. 30: 753-759.   DOI
27 Bang, H., Kwak, J. H., Ahn, H. Y., Shin, D. Y. and Lee, J. H. (2014) Korean red ginseng improves glucose control in subjects with impaired fasting glucose, impaired glucose tolerance, or newly diagnosed type 2 diabetes mellitus. J. Med. Food 17: 128-134.   DOI
28 Li, A. M. and Zhao, J. (2009) Effect of renshen jianxin capsule for alleviating insulin resistance in patients with coronary heart disease and glucose tolerance impairment. Zhongguo Zhong Xi Yi Jie He Za Zhi 29: 830-833.
29 Nam, K. Y., Kim, Y. S., Shon, M. Y. and Park, J. D. (2015) Recent advances in studies on chemical constituents and biological activities of Korean black ginseng (Panax ginseng C. A. Meyer). Kor. J. Pharmacogn. 46: 173-188.
30 Kim, H. Y. and Kim, K. (2012) Regulation of signaling molecules associated with insulin action, insulin secretion and pancreatic ${\beta}$-cell mass in the hypoglycemic effects of Korean red ginseng in Goto-Kakizaki rats. J. Ethnopharmacol. 142: 53-58.   DOI
31 Kim, J. H., Pan, J. H., Cho, H. T. and Kim, Y. J. (2016) Black ginseng extract counteracts streptozotocin-induced diabetes in mice. PLoS One 11: e0146843.   DOI
32 Kim, S. N. and Kang, S. J. (2009) Effects of black ginseng (9 times-steaming ginseng) on hypoglycemic action and changes in the composition of ginsenosides on the steaming process. Korean J. Food Sci. Technol. 41: 77-81.
33 Kang, S. J. and Kim, A. J. (2011) Anti-diabetic effect of black ginseng in C57BLKS/J-db/db mice. The Korean Journal of Food And Nutrition 24: 770-776.   DOI
34 Kim, A. J., Yoo, H. S. and Kang, S. J. (2012) Ameliorative effect of black ginseng on diabetic complications in C57BLKS/J-db/db mice. The Korean Journal of Food And Nutrition 25: 99-104.   DOI
35 Lee, M. R., Kim, B. C., Kim, R., Oh, H. I., Kim, H. K., Choi, K. J. and Sung, C. K. (2013) Anti-obesity effects of black ginseng extract in high fat diet-fed mice. J. Ginseng Res. 37: 308-314.   DOI
36 Yuan, H. D., Kin, S. J., Quan, H. Y., Huang, B. and Chung, S. H. (2010) Ginseng leaf extract prevents high fat dietinduced hyperglycemia and hyperlipidemia through AMPK activation. J. Ginseng Res. 34: 369-375.   DOI
37 Zhang, Z., Li, X., Lv, W., Yang, Y., Gao, H., Yang, J., Shen, Y. and Ning, G. (2008) Ginsenoside Re reduces insulin resistance through inhibition of c-Jun NH2-terminal kinase and nuclear factor-kappa B. Mol. Endocrinol. 22: 186-195.   DOI
38 Trayhurn, P., Bing, C. and Wood, I. S. (2006) Adipose tissue and adipokines-energy regulation from the human perspective. The Journal of Nutrition. 136: 1935S-1939S.   DOI
39 Dyer J, Wood IS, Palejwala A, Ellis A, and Shirazi-Beechey SP (2002) Expression of monosaccharide transporters in intestine of diabetic humans. Am. J. Physiol. Gastrointest. Liver Physiol. 282: G241-G248   DOI
40 Wang, C. W., Su, S. C., Huang, S. F., Huang, Y. C., Chan, F. N., Kuo, Y. H., Hung, M. W., Lin, H. C., Chang, W. L. and Chang, T. C. (2015) An essential role of cAMP response element binding protein in ginsenoside Rg1-mediated inhibition of $Na^+$/glucose cotransporter 1 gene expression. Mol. Pharmacol. 88: 1072-1083.   DOI
41 Mu, Q., Fang, X., Li, X., Zhao, D., Mo, F., Jiang, G., Yu, N., Zhang, Y., Guo, Y., Fu, M., Liu, J. L., Zhang, D. and Gao, S. (2015) Ginsenoside Rb1 promotes browning through regulation of $PPAR{\gamma}$ in 3T3-L1 adipocytes. Biochem. Biophys. Res. Commun. 466: 530-535.   DOI
42 Hwang, J. T., Kim, S. H., Lee, M. S., Kim, S. H., Yang, H. J., Kim, M. J., Kim, H. S., Ha, J., Kim, M. S. and Kwon, D. Y. (2007) Anti-obesity effects of ginsenoside Rh2 are associated with the activation of AMPK signaling pathway in 3T3-L1 adipocyte. Biochem. Biophys. Res. Commun. 364: 1002-1008.   DOI
43 Huang, Y. C., Lin, C. Y., Huang, S. F., Lin, H. C., Chang, W. L. and Chang, T. C. (2010) Effect and mechanism of ginsenosides CK and Rg1 on stimulation of glucose uptake in 3T3-L1 adipocytes. J. Agric. Food Chem. 58: 6039-6047.   DOI
44 Choi, H. S., Kim, S., Kim, M. J., Kim, M. S., Kim, J., Park, C. W., Seo, D., Shin, S. S. and Oh, S. W. (2018) Efficacy and safety of Panax ginseng berry extract on glycemic control: A 12-wk randomized, double-blind, and placebo-controlled clinical trial. J. Ginseng Res. 42: 90-97.   DOI
45 Song, B., Ding, L., Zhang, H., Chu, Y., Chang, Z., Yu, Y., Guo, D., Zhang, S. and Liu, X. (2017) Ginsenoside Rb1 increases insulin sensitivity through suppressing $11{\beta}$-hydroxysteroid dehydrogenase type I. American Journal of Translational Research 9: 1049.
46 Liu, L., Huang, J., Hu, X., Li, K. and Sun, C. (2011) Simultaneous determination of ginsenoside (G-Re, G-Rg1, GRg2, G-F1, G-Rh1) and protopanaxatriol in human plasma and urine by LC-MS/MS and its application in a pharmacokinetics study of G-Re in volunteers. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 879: 2011-2017.   DOI
47 Xie, J. T., Mehendale, S. R., Li, X., Quigg, R., Wang, X., Wang, C. Z., Wu, J. A., Aung H. H., A Rue, P., Bell, G. I. and Yuan, C. S. (2005) Antidiabetic effect of ginsenoside Re in ob/ob mice. Biochim. Biophys. Acta 1740: 319-325.   DOI
48 Yoon, J. W., Kang, S. M., Vassy, J. L., Shin, H., Lee, Y. H., Ahn, H. Y., Choi, S. H., Park, K. S., Jang, H. C. and Lim, S. (2012) Efficacy and safety of ginsam, a vinegar extract from Panax ginseng, in type 2 diabetic patients: Results of a double-blind, placebo-controlled study. J. Diabetes Investig. 3: 309-317.   DOI
49 Oh, M. R., Park, S. H., Kim, S. Y., Back, H. I., Kim, M. G., Jeon, J. Y., Ha, K. C., Na, W. T., Cha, Y. S., Park, B. H., Park, T. S. and Chae, S. W. (2014) Postprandial glucoselowering effects of fermented red ginseng in subjects with impaired fasting glucose or type 2 diabetes: a randomized, double-blind, placebo-controlled clinical trial. BMC Complement. Altern. Med. 14: 237.   DOI
50 Park, S. H., Oh, M. R., Choi, E. K., Kim, M. G., Ha, K. C., Lee, S. K., Kim, Y. G., Park, B. H., Kim, D. S. and Chae, S. W. (2014) An 8-wk, randomized, double-blind, placebocontrolled clinical trial for the antidiabetic effects of hydrolyzed ginseng extract. J. Ginseng Res. 38: 239-243.   DOI
51 Lee, K. J., Lee, S. Y. and Ji, G. E. (2013) Diabetes-ameliorating effects of fermented red ginseng and causal effects on hormonal interactions: testing the hypothesis by multiple group path analysis. J. Med. Food 16: 383-395.   DOI
52 Reeds, D. N., Patterson, B. W., Okunade, A., Holloszy, J. O., Polonsky, K. S. and Klein, S. (2011) Ginseng and ginsenoside Re do not improve ${\beta}$-cell function or insulin sensitivity in overweight and obese subjects with impaired glucose tolerance or diabetes. Diabetes Care 34: 1071-1076.   DOI
53 Shin, S. K., Kwon, J. H., Jeong, Y. J., Jeon, S. M., Choi, J. Y. and Choi, M. S. (2011) Supplementation of cheonggukjang and red ginseng cheonggukjang can improve plasma lipid profile and fasting blood glucose concentration in subjects with impaired fasting glucose. J. Med. Food. 14: 108-113.   DOI
54 Cho, W. C., Chung, W. S., Lee, S. K., Leung, A. W., Cheng, C. H. and Yue, K. K. (2006) Ginsenoside Re of Panax ginseng possesses significant antioxidant and antihyperlipidemic efficacies in streptozotocin-induced diabetic rats. European Journal of Pharmacology 550: 173-179.   DOI
55 Cho, W. C., Yip, T. T., Chung, W. S., Lee, S. K., Leung, A. W., Cheng, C. H. and Yue, K. K. (2006) Altered expression of serum protein in ginsenoside Re-treated diabetic rats detected by SELDI-TOF MS. Journal of Ethnopharmacology 108: 272-279.   DOI
56 Kim, H. O., Park, M. J. and Han, J. S. (2011) Effects of fermented red ginseng supplementation on blood glucose and insulin resistance in type 2 diabetic patients. Journal of The Korean Society of Food Science and Nutrition 40: 696-703.   DOI
57 Kim, U., Park, M. H., Kim, D. H. and Yoo, H. H. (2013) Metabolite profiling of ginsenoside Re in rat urine and feces after oral administration. Food Chem. 136: 1364-1369.   DOI
58 Reay, J. L., Scholey, A. B., Milne, A., Fenwick, J. and Kennedy, D. O. (2009) Panax ginseng has no effect on indices of glucose regulation following acute or chronic ingestion in healthy volunteers. Br. J. Nutr. 101: 1673-1678.   DOI
59 Ni, H. X., Yu, N. J. and Yang, X. H. (2010) The study of ginsenoside on PPAR gamma expression of mononuclear macrophage in type 2 diabetes. Mol. Biol. Rep. 37: 2975-2979.   DOI
60 Jung, D. H., Lee, Y. J., Kim, C. B., Kim, J. Y., Shin, S. H. and Park, J. K. (2016) Effects of ginseng on peripheral blood mitochondrial DNA copy number and hormones in men with metabolic syndrome: A randomized clinical and pilot study. Complement. Ther. Med. 24: 40-46.   DOI
61 Wang, C. H. and Wei, Y. H. (2017) Role of mitochondrial dysfunction and dysregulation of $Ca^{2+}$ homeostasis in the pathophysiology of insulin resistance and type 2 diabetes. J. Biomed. Sci. 24: 70.   DOI
62 Kim, K., Park, M., Lee, Y. M., Rhyu, M. R. and Kim, H. Y. (2014) Ginsenoside metabolite compound K stimulates glucagon-like peptide-1 secretion in NCI-H716 cells via bile acid receptor activation. Arch. Pharm. Res. 37: 1193-1200.   DOI
63 Xie, J. T., Wu, J. A., Mehendale, S., Aung, H. H. and Yuan, C. S. (2004) Anti-hyperglycemic effect of the polysaccharides fraction from American ginseng berry extract in ob/ob mice. Phytomedicine 11: 182-187.   DOI
64 Xie, J. T., Wang, C. Z., Wang, A. B., Wu, J., Basila, D. and Yuan, C. S. (2005) Antihyperglycemic effects of total ginsenosides from leaves and stem of Panax ginseng. Acta Pharmacol. Sin. 26: 1104-1110.   DOI
65 Xie, J. T., Zhou, Y. P., Dey, L., Attele, A. S., Wu, J. A., Gu, M., Polonsky, K. S. and Yuan, C. S. (2002) Ginseng berry reduces blood glucose and body weight in db/db mice. Phytomedicine 9: 254-258.   DOI
66 Dey L, Xie JT, Wang A, Wu J, Maleckar SA, Yuan CS. (2003) Anti- hyperglycemic effects of ginseng: comparison between root and berry. Phytomedicine 10: 600-605.   DOI
67 Park, E. Y., Kim, H. J., Kim, Y. K., Park, S. U., Choi, J. E., Cha, J. Y. and Jun, H. S. (2012) Increase in insulin secretion induced by Panax ginseng berry extracts contributes to the amelioration of hyperglycemia in streptozotocininduced diabetic mice. J. Ginseng Res. 36: 153-160.   DOI
68 Seo, E., Kim, S., Lee, S. J., Oh, B. C. and Jun, H. S. (2015) Ginseng berry extract supplementation improves agerelated decline of insulin signaling in mice. Nutrients 7: 3038-3053.   DOI
69 Attele, A. S., Zhou, Y. P., Xie, J. T., Wu, J. A., Zhang, L., Dey, L,. Pugh, W., Rue, P. A., Polonsky, K. S. and Yuan, C. S. (2002) Antidiabetic effects of Panax ginseng berry extract and the identification of an effective component. Diabetes 51: 1851-1858.   DOI
70 Ponnuraj, S. P., Siraj, F., Kang, S., Noh, H. Y., Min, J. W., Kim, Y. J. and Yang, D. C. (2014) Amelioration of insulin resistance by Rk1 + Rg5 complex under endoplasmic reticulum stress conditions. Pharmacognosy Res. 6: 292-296.   DOI
71 Simu, S. Y., Ahn, S., Castro-Aceituno, V. and Yang, D. C. (2017) Ginsenoside Rg5 + Rk1 exerts an anti-obesity effect on 3T3-L1 cell line by the downregulation of $PPAR{\gamma}$ and $CEBP{\alpha}$. Iran J. Biotechnol. 15: 252-259.   DOI
72 Lee, M. S., Hwang, J. T., Kim, S. H., Yoon, S., Kim, M. S., Yang, H. J. and Kwon, D. Y. (2010) Ginsenoside Rc, an active component of Panax ginseng, stimulates glucose uptake in C2C12 myotubes through an AMPK-dependent mechanism. J. Ethnopharmacol. 127: 771-776.   DOI
73 Seo, Y. S., Shon, M. Y., Kong, R., Kang, O. H,. Zhou, T., Kim, D. Y. and Kwon, D. Y. (2016) Black ginseng extract exerts anti-hyperglycemic effect via modulation of glucose metabolism in liver and muscle. J. Ethnopharmacol. 190: 231-240.   DOI
74 Park, M. W., Ha, J. and Chung, S. H. (2008) 20 (S)-ginsenoside Rg3 enhances glucose-stimulated insulin secretion and activates AMPK. Biological and Pharmaceutical Bulletin 31: 748-751.   DOI
75 Kim, M., Ahn, B. Y., Lee, J. S., Chung, S. S., Lim, S., Park, S. G., Jung, H. S., Lee, H. K. and Park, K. S. (2009) The ginsenoside Rg3 has a stimulatory effect on insulin signaling in L6 myotubes. Biochem. Biophys. Res. Commun. 389: 70-73.   DOI
76 Qiu, S., Yang, W. Z., Yao, C. L., Shi, X. J., Li, J. Y., Lou, Y., Duan, Y. N., Wu, W. Y. and Guo, D. A. (2017) Malonylginsenosides with Potential Antidiabetic Activities from the Flower Buds of Panax ginseng. J. Nat. Prod. 80: 899-908.   DOI
77 Yang, H., Son, G. W., Park, H. R., Lee, S. E. and Park, Y. S. (2016) Effect of Korean red ginseng treatment on the gene expression profile of diabetic rat retina. J. Ginseng Res. 40: 1-8.   DOI
78 Park, C. H., Park, S. K., Seung, T. W., Jin, D. E., Guo, T. and Heo, H. J. (2015) Effect of ginseng (Panax ginseng) berry EtOAc fraction on cognitive impairment in C57BL/6 mice under high-fat diet inducement. Evid. Based Complement. Alternat. Med. 2015: 316527.
79 Park, B. J., Lee, Y. J., Lee, H. R., Jung, D. H., Na, H. Y., Kim, H. B. and Shim, J. Y. (2012) Effects of Korean red ginseng on cardiovascular risks in subjects with metabolic syndrome: a double-blind randomized controlled study. Korean J. Fam. Med. 33: 190-196.   DOI
80 Cho, Y. H., Ahn, S. C., Lee, S. Y., Jeong, D. W., Choi, E. J., Kim, Y. J., Lee, J. G., Lee, Y. H. and Shin, B. C. (2013) Effect of Korean red ginseng on insulin sensitivity in nondiabetic healthy overweight and obese adults. Asia Pac. J. Clin. Nutr. 22: 365-371.
81 Sun, Q., Meng, Q. T., Jiang, Y. and Xia, Z. Y. (2012) Ginsenoside Rb1 attenuates intestinal ischemia reperfusion induced renal injury by activating Nrf2/ARE pathway. Molecules 17: 7195-7205.   DOI
82 Sun, Q., Meng, Q. T., Jiang, Y., Liu, H. M., Lei, S. Q., Su, W. T., Duan, W, N., Wu, Y., Xia, Z. Y. and Xia, Z. Y. (2013) Protective effect of ginsenoside Rb1 against intestinal ischemia-reperfusion induced acute renal injury in mice. PloS one 8: e80859.   DOI
83 El-Sheikh, A. A. K. and Kamel, M. Y. (2016) Ginsenoside-Rb1 ameliorates lithium-induced nephrotoxicity and neurotoxicity: Differential regulation of COX-2/PGE2 pathway. Biomed. Pharmacother. 84: 1873-1884.   DOI
84 Xu, X., Lu, Q., Wu, J., Li, Y. and Sun, J. (2017) Impact of extended ginsenoside Rb1 on early chronic kidney disease: a randomized, placebo-controlled study. Inflammopharmacology 25: 33-40.   DOI
85 Tetsutani, T., Yamamura, M., Yamaguchi, T., Onoyama, O. and Kono, M. (2000) Can red ginseng control blood glucose in diabetic patients? Ginseng Rev. 28: 44-47.
86 Xiong, Y., Shen, L., Liu, K. J., Tso, P., Xiong, Y., Wang, G., Woods, S. C. and Liu, M. (2010) Antiobesity and antihyperglycemic effects of ginsenoside Rb1 in rats. Diabetes 59: 2505-2512.   DOI
87 Choi, M. R., Kwak, S. M., Bang, S. H., Jeong, J. E. and Kim, D. J. (2017) Chronic saponin treatment attenuates damage to the pancreas in chronic alcohol-treated diabetic rats. J. Ginseng Res. 41: 503-512.   DOI
88 Liu, Z., Wang, L. J., Li, X., Hu, J. N., Chen, Y., Ruan, C. C. and Sun, G. Z. (2009) Hypoglycemic effects of malonylginsenosides extracted from roots of Panax ginseng on streptozotocin-induced diabetic mice. Phytother. Res. 23: 1426-1430.   DOI
89 Liu, Z., Li, W., Li, X., Zhang, M., Chen, L., Zheng, Y. N., Sun, G. Z. and Ruan, C. C. (2013) Antidiabetic effects of malonyl ginsenosides from Panax ginseng on type 2 diabetic rats induced by high-fat diet and streptozotocin. J. Ethnopharmacol. 145: 233-240.   DOI
90 Shen, L., Haas, M., Wang, D. Q., May, A., Lo, C. C., Obici, S., Tso, P., Woods, S. C. and Liu, M. (2015) Ginsenoside Rb1 increases insulin sensitivity by activating AMP-activated protein kinase in male rats. Physiol. Rep. 3: e12543.   DOI
91 Kang, K. S., Kim, H. Y., Yamabe, N., Nagai, R. and Yokozawa, T. (2006) Protective effect of sun ginseng against diabetic renal damage. Biol. Pharm. Bull. 29: 1678-1684.   DOI
92 Park, M. J., Bae, C. S., Lim, S. K., Kim, D. I., Lim, J. C., Kim, J. C., Han, H. J., Moon, J. H., Kim, K. Y., Yoon, K. C. and Park, S. H. (2010) Effect of protopanaxadiol derivatives in high glucose-induced fibronectin expression in primary cultured rat mesangial cells: role of mitogen-activated protein kinases and Akt. Arch. Pharm. Res. 33: 151-157.   DOI
93 Lo, S. H., Hsu, C. T., Niu, H. S., Niu, C. S., Cheng, J. T. and Chen, Z. C. (2017) Ginsenoside Rh2 Improves Cardiac Fibrosis via $PPAR{\delta}$-STAT3 Signaling in Type 1-Like Diabetic Rats. Int. J. Mol. Sci. 18: 1364.   DOI
94 Hong, Y. J., Kim, N., Lee, K., Sonn, C. H., Lee, J. E., Kim, S. T., Baeg, I. H. and Lee, K. M. (2012) Korean red ginseng (Panax ginseng) ameliorates type 1 diabetes and restores immune cell compartments. J. Ethnopharmacol. 144: 225-233.   DOI
95 Kim, S. H., Kang, J. S., Lee, S. J. and Chung, Y. J. (2008) Antidiabetic effect of Korean red ginseng by puffing process in streptozotocin-induced diabetic rats. J. Korean Soc. Food Sci. Nutr. 37: 701-707.   DOI
96 Nishijo, H., Uwano, T., Zhong, Y. M. and Ono, T. (2004) Proof of the mysterious efficacy of ginseng: basic and clinical trials: effects of red ginseng on learning and memory deficits in an animal model of amnesia. J. Pharmacol. Sci. 95: 145-152.   DOI
97 Rokot, N. T., Kairupan, T. S., Cheng, K. C., Runtuwene, J., Kapantow, N. H., Amitani, M., Morinaga, A., Amitani, H., Asakawa, A. and Inui, A. (2016) A role of ginseng and its constituents in the treatment of central nervous system disorders. Evid. Based Complement. Alternat. Med. 2016: 2614742.
98 De Souza, L. R., Jenkins, A. L., Sievenpiper, J. L., Jovanovski, E., Rahelic, D. and Vuksan, V. (2011) Korean red ginseng (Panax ginseng C.A. Meyer) root fractions: differential effects on postprandial glycemia in healthy individuals. J. Ethnopharmacol. 137: 245-250.   DOI
99 Huang, Q., Wang, T., Yang, L. and Wang, H. Y. (2017) Ginsenoside Rb2 alleviates hepatic lipid accumulation by restoring autophagy via induction of Sirt1 and activation of AMPK. Int. J. Mol. Sci. 18: 1063.   DOI
100 Singh, R., Kaushik, S., Wang, Y., Xiang, Y., Novak, I., Komatsu, M., Tanaka, K., Cuervo, A. M. and Czaja, M. J. (2009) Autophagy regulates lipid metabolism. Nature 458: 1131-1135.   DOI
101 De Souza, L. R., Jenkins, A. L., Jovanovski, E., Rahelic, D. and Vuksan, V. (2015) Ethanol extraction preparation of American ginseng (Panax quinquefolius L) and Korean red ginseng (Panax ginseng C.A. Meyer): differential effects on postprandial insulinemia in healthy individuals. J. Ethnopharmacol. 159: 55-61.   DOI
102 Suzuki, Y. and Hikino, H. (1989) Mechanisms of hypoglycemic activity of panaxans A and B, glycans of Panax ginseng roots: effects on plasma level, secretion, sensitivity and binding of insulin in mice. Phytotherapy Research 3 : 20-24.   DOI
103 Takaku, T., Kameda, K., Matsuura, Y., Sekiya, K. and Okuda, H. (1990) Studies on insulin-like substances in Korean red ginseng. Planta Medica 56: 27-30.   DOI
104 Wang, B. X., Zhou, Q. L., Yang, M., Wang, Y., Cui, Z. Y., Liu, Y. Q. and Ikejima, T. (2003) Hypoglycemic activity of ginseng glycopeptide. Acta Pharmacol. Sin. 24: 50-54.
105 Wang, B. X., Zhou, Q. L., Yang, M., Wang, Y., Cui, Z. Y., Liu, Y. Q. and Ikejima, T. (2003) Hypoglycemic mechanism of ginseng glycopeptide. Acta Pharmacol. Sin. 24: 61-66
106 Sun, C., Chen, Y., Li, X., Tai, G., Fan, Y. and Zhou, Y. (2014) Anti-hyperglycemic and anti-oxidative activities of ginseng polysaccharides in STZ-induced diabetic mice. Food Funct. 5: 845-848.   DOI
107 Jiao, L., Zhang, X., Wang, M., Li, B., Liu, Z. and Liu, S. (2014) Chemical and antihyperglycemic activity changes of ginseng pectin induced by heat processing. Carbohydr. Polym. 114: 567-573.   DOI
108 Yu, H., Zhen, J., Yang, Y., Gu, J., Wu, S. and Liu, Q. (2016) Ginsenoside Rg1 ameliorates diabetic cardiomyopathy by inhibiting endoplasmic reticulum stress-induced apoptosis in a streptozotocin-induced diabetes rat model. J. Cell. Mol. Med. 20: 623-631.   DOI
109 Gonzalez-Rodriguez, A., Mayoral, R., Agra, N., Valdecantos, M. P., Pardo, V., Miquilena-Colina, M. E., Vargas-Castrillon, J., Lo Iacono, O., Corazzari, M., Fimia G. M., Piacentini M, Muntane J., Bosca, L., Garcia-Monzon, C., Martin-Sanz, P. and Valverde A. M. (2014) Impaired autophagic flux is associated with increased endoplasmic reticulum stress during the development of NAFLD. Cell Death Dis. 5: e1179.   DOI
110 Yu, H. T., Zhen, J., Pang, B., Gu, J. N. and Wu, S. S. (2015) Ginsenoside Rg1 ameliorates oxidative stress and myocardial apoptosis in streptozotocin-induced diabetic rats. Journal of Zhejiang University-Science B 16: 344-354.   DOI
111 Li, J. B., Zhang, R., Han, X. and Piao, C. L. (2018) Ginsenoside Rg1 inhibits dietary-induced obesity and improves obesity-related glucose metabolic disorders. Braz. J. Med. Biol. Res. 51: e7139.   DOI
112 Tian, W., Chen, L., Zhang, L., Wang, B., Li, X. B., Fan, K. R., Ai, C. H., Xia, X., Li, S. D. and Li, Y. (2017) Effects of ginsenoside Rg1 on glucose metabolism and liver injury in streptozotocin-induced type 2 diabetic rats. Genet. Mol. Res. 16: gmr16019463.
113 Jang, M. H., Chang, H. K., Shin, M. C., Lee, T. H., Kim, Y. P., Kim, E. H. and Kim, C. J. (2003) Effect of ginseng radix on c-Fos expression in the hippocampus of streptozotocininduced diabetic rats. J. Pharmacol. Sci. 91: 149-152.   DOI
114 Kamal, A., Biessels, G. J., Duis, S. E. and Gispen, W. H. (2000) Learning and hippocampal synaptic plasticity in streptozotocin-diabetic rats: interaction of diabetes and ageing. Diabetologia 43: 500-506.   DOI
115 Jackson-Guilford, J., Leander, J. D. and Nisenbaum, L. K. (2000) The effect of streptozotocin-induced diabetes on cell proliferation in the rat dentate gyrus. Neurosci. Lett. 293: 91-94.   DOI
116 Lim, B. V., Shin, M. C., Jang, M. H., Lee, T. H., Kim, Y. P., Kim, H. B., Lee, K. S., Kim, H., Kim, E. H. and Kim, C. J. (2002) Ginseng radix increases cell proliferation in dentate gyrus of rats with streptozotocin-induced diabetes. Biol. Pharm. Bull. 25: 1550-1554.   DOI
117 Gispen, W. H. and Biessels, G. J. (2000) Cognition and synaptic plasticity in diabetes mellitus. Trends Neurosci. 23: 542-549.   DOI
118 Liu, D., Zhang, H., Gu, W., Liu, Y. and Zhang, M. (2014) Ginsenoside Rb1 protects hippocampal neurons from high glucose-induced neurotoxicity by inhibiting $GSK3{\beta}$-mediated CHOP induction. Mol. Med. Rep. 9: 1434-1438.   DOI
119 Chu, S., Gu, J., Feng, L., Liu, J., Zhang, M., Jia, X., Liu, M. and Yao, D. (2014) Ginsenoside Rg5 improves cognitive dysfunction and beta-amyloid deposition in STZ-induced memory impaired rats via attenuating neuroinflammatory responses. Int. Immunopharmacol. 19: 317-326.   DOI
120 Kim, C. S., Jo, K., Kim, J. S., Pyo, M. K. and Kim, J. (2017) GS-E3D, a new pectin lyase-modified red ginseng extract, inhibited diabetes-related renal dysfunction in streptozotocininduced diabetic rats. BMC Complement. Altern. Med. 17: 430.   DOI
121 Pandey, A., Tripathi, P., Pandey, R., Srivatava, R. and Goswami, S. (2011) Alternative therapies useful in the management of diabetes: A systematic review. J. Pharm. Bioallied. Sci. 3: 504-512.   DOI
122 Shen, J., Zhao, Z., Shang,W., Liu, C., Zhang, B., Zhao, L. and Cai, H. (2017) Ginsenoside Rg1 nanoparticle penetrating the blood-brain barrier to improve the cerebral function of diabetic rats complicated with cerebral infarction. Int. J. Nanomedcine 12: 6477-6486.   DOI
123 Liu, Q., Zhang, F. G., Zhang, W. S., Pan, A., Yang, Y. L., Liu, J. F., Li, P., Liu, B. L. and Qi, L. W. (2017) Ginsenoside Rg1 inhibits glucagon-induced hepatic gluconeogenesis through Akt-FoxO1 interaction. Theranostics 7: 4001-4012.   DOI
124 Bai, L., Gao, J., Wei, F., Zhao, J., Wang, D. and Wei, J. (2018) Therapeutic potential of ginsenosides as an adjuvant treatment for diabetes. Front. Pharmacol. 9: A423.
125 Wang, H., Reaves, L. A. and Edens, N. K. (2006) Ginseng extract inhibits lipolysis in rat adipocytes in vitro by activating phosphodiesterase 4. The Journal of Nutrition 136: 337-342.   DOI
126 Shen, H., Gao, X. J., Li, T., Jing, W. H., Han, B. L., Jia, Y. M., Hu, N., Yan, Z. X., Li, S. L. and Yan, R. (2018) Ginseng polysaccharides enhanced ginsenoside Rb1 and microbial metabolites exposure through enhancing intestinal absorption and affecting gut microbial metabolism. J. Ethnopharmacol. 216: 47-56.   DOI
127 Shishtar, E., Sievenpiper, J. L., Djedovic, V., Cozma, A. I., Ha, V., Jayalath, V. H., Jenkins, D. J., Meija, S. B., de Souza, R. J., Jovanovski, E. and Vuksan, V. (2014) The effect of ginseng (the genus Panax) on glycemic control: a systematic review and meta-analysis of randomized controlled clinical trials. PLoS One 9: e107391.   DOI
128 Gui, Q. F., Xu, Z. R., Xu, K. Y. and Yang, Y. M. (2016) The efficacy of ginseng-related therapies in type 2 diabetes mellitus: an updated systematic review and meta-analysis. Medicine (Baltimore) 95: e2584.   DOI
129 Yuan, H. D. and Chung, S. H. (2010) Protective effects of fermented ginseng on streptozotocin-induced pancreatic beta-cell damage through inhibition of NF-kappaB. Int. J. Mol. Med. 25: 53-58.
130 Park, S., Ahn, I. S., Kwon, D. Y., Ko, B. S. and Jun, W. K. (2008) Ginsenpsides Rb1 and Rg1 suppress triglyceride accumulation in 3T3-L1 adipocytes and enhance beta-cell insulin secretion and viability in Min6 cells via Pka-dependent pathways. Biosci. Biotechnol. Biochem. 72: 2815-2823.   DOI
131 Shen, L., Xiong, Y., Wang, D. Q., Howles, P., Basford, J. E., Wang, J., Xiong, Y. Q., Hui, D. Y., Woods, S. C. and Liu, M. (2013) Ginsenoside Rb1 reduces fatty liver by activating AMP-activated protein kinase in obese rats. Journal of Lipid Research 54: 1430-1438.   DOI
132 Kim, J. M., Park, C. H., Park, S. K., Seung, T. W., Kang, J. Y., Ha, J. S., Lee, D. S., Lee, U., Kim, D. O. and Heo, H. J. (2017) Ginsenoside ameliorates brain insulin resistance and cognitive dysfunction in high fat diet-induced C57BL/6 mice. J. Agric. Food Chem. 65: 2719-2729.   DOI
133 Kimura, M. and Suzuki, J. (1981) The pattern of action blended Chinese traditional medicines to glucose tolerance curves in genetically diabetic KK-CAy mice. J. pham. Dyn. 4: 907-915.   DOI
134 Yuan, H. D., Kim, J. T., Kim, S. H. and Chung, S. H. (2012) Ginseng and Diabetes: The Evidences from In vitro, animal and human studies. J. Ginseng Res. 36: 27-39.   DOI
135 Nam, K. Y. (1996). The new Korean ginseng (constituent and its pharmacological efficacy). Korea Ginseng & Tabacco Research Institute, Daejeon, Korea. 1-134.
136 Shi, Y., Wan, X., Shao, N., Ye, R., Zhang, N. and Zhang, Y. (2016) Protective and anti-angiopathy effects of ginsenoside Re against diabetes mellitus via the activation of p38 MAPK, ERK1/2 and JNK signaling. Mol. Med. Rep. 14: 4849-4856.   DOI
137 Liu, T., Peng, Y. F., Jia, C., Yang, B. H., Tao, X., Li, J. and Fang, X. (2015) Ginsenoside Rg3 improves erectile function in streptozotocin-induced diabetic rats. The Journal of Sexual Medicine 12: 611-620.   DOI
138 Kim, K. S., Jung, Yang. H., Lee, I. S., Kim, K. H., Park, J., Jeong, H. S., Kim, Y., Ahn, K. S., Na, Y. C. and Jang, H. J. (2015) The aglycone of ginsenoside Rg3 enables glucagonlike peptide-1 secretion in enteroendocrine cells and alleviates hyperglycemia in type 2 diabetic mice. Sci. Rep. 5: 18325.   DOI
139 Li, X., Luo, J., Anandh, Babu. P. V., Zhang, W., Gilbert, E., Cline, M., McMillan, R., Hulver, M., Alkhalidy, H., Zhen, W., Zhang, H. and Liu, D. (2014) Dietary supplementation of chinese ginseng prevents obesity and metabolic syndrome in high-fat diet-fed mice. J. Med. Food. 17: 1287-1297.   DOI
140 Guo, S. (2014) Insulin signaling, resistance, and the metabolic syndrome: insights from mouse models into disease mechanisms. J. Endocrinol. 220: T1-T23.   DOI
141 Yun, S. N., Ko, S. K., Lee, K. H. and Chung, S. H. (2007) Vinegar-processed ginseng radix improves metabolic syndrome induced by a high fat diet in ICR mice. Arch. Pharm. Res. 30: 587-595.   DOI
142 Kanda, H., Tateya, S., Tamori, Y., Kotani, K., Hiasa, K., Kitazawa, R., Kitazawa, S., Miyachi, H., Maeda, S. and Egashira, K. (2006) MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J. Clin. Invest. 116: 1494-1505.   DOI
143 Oh, M. J., Kim, H. J., Park, E. Y., Ha, N. H., Song, M. G., Choi, S. H., Chun, B. G. and Kim, D. H. (2017) The effect of Korean Red Ginseng extract on rosiglitazone-induced improvement of glucose regulation in diet-induced obese mice. J. Ginseng Res. 41: 52-59.   DOI
144 Kho, M. C., Lee, Y. J., Park, J. H., Kim, H. Y., Yoon, J. J., Ahn, Y. M., Tan, R., Park, M. C., Cha, J. D., Choi, K. M., Kang, D. G. and Lee, H. S. (2016) Fermented red ginseng potentiates improvement of metabolic dysfunction in metabolic syndrome rat models. Nutrients 8: 369.   DOI
145 Liu, T. P., Liu, I. M. and Cheng, J. T. (2005) Improvement of insulin resistance by Panax ginseng in fructose-rich chow-fed rats. Horm. Metab. Res. 37: 146-151.   DOI
146 Dey, L., Attele, A. S. and Yuan, C. S. (2002) Alternative therapies for type 2 diabetes. Altern. Med. Rev. 7: 45-58.
147 Kang, K. S., Yamabe, N., Kim, H. Y., Park, J. H. and Yokozawa, T. (2008) Therapeutic potential of 20(S)-ginsenoside Rg(3) against streptozotocin-induced diabetic renal damage in rats. Eur. J. Pharmacol. 591: 266-272.   DOI
148 Kang, K. S., Yamabe, N., Kim, H. Y., Park, J. H. and Yokozawa, T. (2010) Effects of heat-processed ginseng and its active component ginsenoside 20(S)-Rg3 on the progression of renal damage and dysfunction in type 2 diabetic Otsuka Long-Evans Tokushima Fatty rats. Biol. Pharm. Bull. 33: 1077-1081.   DOI
149 Deng, J., Liu, Y., Duan, Z., Zhu, C., Hui, J., Mi, Y., Ma, P., Ma, X., Fan, D. and Yang, H. (2017) Protopanaxadiol and protopanaxatriol-type saponins ameliorate glucose and lipid metabolism in type 2 diabetes mellitus in high-fat diet/streptozocin-induced mice. Front. Pharmacol. 8: 506.   DOI
150 Kim, D. H. (2002) Herbal medicines are activated by intestinal microflora. Nat. Prod. Sci. 8: 35-43.
151 Kim, D. H. (2012) The possible role of intestinal microflora in pharmacological activities of ginseng. International Journal of Biomedical and Pharmaceutical Sciences 6: 90-96.
152 Abdul-Ghani, M. A., Tripathy, D. and DeFronzo, R. A. (2006) Contributions of beta-cell dysfunction and insulin resistance to the pathogenesis of impaired glucose tolerance and impaired fasting glucose. Diabetes Care 29: 1130-1139.   DOI
153 Yoon, S. H., Han, E. J., Sung, J. H., Chung, S. H., Kim, K. and Kim, H. Y. (2008) Korean red ginseng stimulates insulin release from isolated rat pancreatic islets. J. Ethnopharmacol. 120: 190-195.   DOI
154 Kim, K., Park, M. and Young, K. H. (2009) Ginsenoside Rg3 suppresses palmitate-Induced apoptosis in MIN6N8 pancreatic beta-Cells. J. Clin. Biochem. Nutr. 46: 30-35.   DOI
155 Lee, S. H., Lee, H. J., Lee, Y., Lee, B. W., Cha, B. S., Kang, E. S., Ahn, C. W., Park, J. S., Kim, H. J., Lee, E. Y. and Lee, H. C. (2012) Korean red ginseng (Panax ginseng) improves insulin sensitivity in high fat fed Sprague-Dawley rats. Phytother. Res. 26: 142-147.   DOI
156 Kim, S. D., Kim, Y. J., Huh, J. S., Kim, S. W. and Sohn, D. W. (2013) Improvement of erectile function by Korean red ginseng (Panax ginseng) in a male rat model of metabolic syndrome. Asian J. Androl. 15: 395-399.   DOI
157 Park, S. M., Hong, S. M., Sung, S. R., Lee, J. E. and Kwon, D. Y. (2008) Extracts of Rehmanniae Radix, Ginseng Radix and Scutellariae Radix improve glucose-stimulated insulin secretion and beta-cell proliferation through IRS2 induction. Genes Nutr. 2: 347-351.   DOI
158 Kim, K. and Kim, H. Y. (2008) Korean red ginseng stimulates insulin release from isolated rat pancreatic islets. J. Ethnopharmacol. 120: 190-195.   DOI
159 Kim, H. Y. and Kim, K. (2007) Protective effect of ginseng on cytokine induced apoptosis in pancreatic beta-cells. J. Agric. Food Chem. 55: 2816-2823.   DOI
160 Park, M. W., Ha, J. and Chung, S. H. (2008) 20(S)-ginsenoside Rg3 enhances glucose-stimulated insulin secretion and activates AMPK. Biol. Pharm. Bull. 31: 748-751.   DOI
161 Lee, W. K., Kao, S. T., Liu, I. M. and Cheng, J. T. (2007) Ginsenoside Rh2 is one of the active principles of Panax ginseng root to improve insulin sensitivity in fructose-rich chow-fed rats. Horm. Metab. Res. 39: 347-354.   DOI
162 Wang, Y., Wang, H., Liu, Y., Li, C., Qi, P. and Bao, J. (2012) Antihyperglycemic effect of ginsenoside Rh2 by inducing islet ${\beta}$-cell regeneration in mice. Horm. Metab. Res. 44: 33-40.   DOI
163 Hwang, J. T., Lee, M. S., Kim, H. J., Sung, M. J., Kim, H. Y., Kim, M.S. and Kwon, D. Y. (2009) Antiobesity effect of ginsenoside Rg3 involves the AMPK and PPAR-$\gamma$ signal pathways. Phytother. Res. 23: 262-266.   DOI
164 Park, J. K., Shim, J. Y., Cho, A. R., Cho, M. R. and Lee, Y. J. (2018) Korean red ginseng protects against mitochondrial damage and intracellular inflammation in an animal model of type 2 diabetes mellitus. J. Med. Food 21: 544-550.   DOI
165 Yuan, H. D., Kim, J. T. and Chung, S. H. (2012) Pectinaseprocessed Ginseng radix (GINST) ameliorates hyperglycemia and hyperlipidemia in high fat diet-fed ICR mice. Biomol. Ther. 20: 220-225.   DOI
166 Jung, H. L. and Kang, H. Y. (2013) Effects of Korean red ginseng supplementation on muscle glucose uptake in high-fat fed rats. Chin. J. Nat. Med. 11: 494-499.   DOI
167 Kang, K. S., Ham, J., Kim, Y. J., Park, J. H., Cho, E. J. and Yamabe, M. (2013) Heat-processed Panax ginseng and diabetic renal damage: active components and action mechanism. J. Ginseng Res. 37: 379-388.   DOI
168 Chung, S. H., Choi, C. G. and Park, S. H. (2001) Comparisons between white ginseng radix and rootlet for antidiabetic activity and mechanism in KKAy mice. Arch. Pharm. Res. 24: 214-218.   DOI
169 Reddy, J. K. and Hashimoto, T. (2001) Peroxisomal ${\beta}$-oxidation and peroxisome proliferatoractivated receptor ${\alpha}$: an adaptive metabolic system. Annu. Rev. Nutr. 21: 193-230.   DOI
170 Lee, H. J., Park, S. K., Han, S. J., Kim, S. H., Hur, K. Y., Kang, E. S., Ahn, C. W., Cha, B. S., Kim, K. S. and Lee, H. C. (2007) Korean red ginseng improves insulin sensitivity. Metabolism 58: 1170-1177.   DOI
171 Park, M. Y., Lee, K. S. and Sung, M. K. (2005) Effects of dietary mulberry, Korean red ginseng, and banaba on glucose homeostasis in relation to PPAR-alpha, PPAR-gamma and LPL mRNA expressions. Life Sci. 77: 3344-3354.   DOI
172 Eisenbarth G. S. (1986) Type I diabetes mellitus. A chronic autoimmune disease. N. Engl. J. Med. 314: 1360-1368.   DOI
173 Xiao, N., Lou, M. D., Lu, Y. T., Yang, L. L., Liu, Q., Liu, B., Qi, L. W. and Li, P. (2017) Ginsenoside Rg5 attenuates hepatic glucagon response via suppression of succinateassociated HIF-1alpha induction in HFD-fed mice. Diabetologia 60: 1084-1093.   DOI
174 Shadfar, S., Hwang, C. J., Lim, M. S., Choi, D. Y. and Hong, J. T. (2015) Involvement of inflammation in Alzheimer's disease pathogenesis and therapeutic potential of anti-inflammatory agents. Arch. Pharm. Res. 38: 2106-2119.   DOI
175 Jiang, S., Ren, D., Li, J., Yuan, G., Li, H., Xu, G., Han, X., Du, P. and An, L. (2014) Effects of compound K on hyperglycemia and insulin resistance in rats with type 2 diabetes mellitus. Fitoterapia 95: 58-64.   DOI
176 Jamiolkowski, R. M., Guo, L. Y., Li, Y. R., Shaffer, S. M. and Naji, A. (2012) Islet transplantation in type I diabetes mellitus. Yale J. Biol. Med. 85: 37-43.
177 Lee WK, Kao ST, Liu IM and Cheng JT. (2006) Increase of insulin secretion by ginsenoside Rh2 to lower plasma glucose in Wistar rats. Clin. Exp. Pharmacol. Physiol. 33: 27-32.   DOI
178 Han, G. C., Ko, S. K., Sung, J. H. and Chung, S. H. (2007) Compound K enhances insulin secretion with beneficial metabolic effects in db/db mice. J. Agric. Food Chem. 55: 10641-10648.   DOI
179 Gu, J., Li, W., Xiao, D., Wei, S., Cui, W., Chen, W., Hu, Y., Bi, X., Kim, Y., Li, J., Du, H., Zhang, M. and Chen, L. (2013) Compound K, a final intestinal metabolite of ginsenosides, enhances insulin secretion in MIN6 pancreatic beta-cells by upregulation of GLUT2. Fitoterapi 87: 84-88.   DOI
180 Park, S., Ahn, I. S., Kwon, D. Y., Ko, B. S. and Jun, W. K. (2008) Ginsenosides Rb1 and Rg1 suppress triglyceride accumulation in 3T3-L1 adipocytes and enhance beta-cell insulin secretion and viability in Min6 cells via PKA-dependent pathways. Biosci. Biotechnol. Biochem. 72: 2815-2823.   DOI
181 Chen, F., Chen, Y., Kang, X., Zhou, Z., Zhang, Z. and Liu, D. (2012) Anti-apoptotic function and mechanism of ginseng saponins in Rattus pancreatic ${\beta}$-cells. Biol. Pharm. Bull. 35: 1568-1573.   DOI
182 Yuan, H. D., Kim, S. J. and Chung, S. H. (2011) Beneficial effects of IH-901 on glucose and lipid metabolisms via activating adenosine monophosphate-activated protein kinase and phosphatidylinositol-3 kinase pathways. Metabolism 60: 43-51.   DOI
183 Lee, K. T., Jung, T. W., Lee, H. J., Kim, S. G., Shin, Y. S. and Whang, W. K. (2011) The antidiabetic effect of ginsenoside Rb2 via activation of AMPK. Arch. Pharm. Res. 34: 1201-1208.   DOI
184 Quan, H. Y., Yuan, H. D., Jung, M. S., Ko, S. K., Park, Y. G. and Chung, S. H. (2012) Ginsenoside Re lowers blood glucose and lipid levels via activation of AMP-activated protein kinase in HepG2 cells and high-fat diet fed mice. Int. J. Mol. Med. 29: 73-80.   DOI
185 Musi, N. (2006) AMP-activated protein kinase and type 2 diabetes. Curr. Med. Chem. 13: 583-589.   DOI
186 Ma, P. F., Jiang, J., Gao, C., Cheng, P. P., Li, J. L., Huang, X., Lin, Y. Y., Li, Q., Peng, Y. Z., Cai, M. C., Shao, W., Zhu, Q., Han, S., Qin, Q., Xia, J. J. and Qi, Z. Q. (2014) Immunosuppressive effect of compound K on islet transplantation in an STZ-induced diabetic mouse model. Diabetes 263: 3458-3469.
187 Shao, X., Li, N., Zhan, J., Sun, H., An, L. and Du, P. (2015) Protective effect of compound K on diabetic rats. Nat. Prod. Commun. 10: 243-245.