Browse > Article

Phenolic Constituents of Boehmeria pannosa and α-Glucosidase Inhibitory Activity  

Ryu, Se Hwan (College of Pharmacy, Chungbuk National University)
Kim, Seon Beom (College of Pharmacy, Chungbuk National University)
Yeon, Sang Won (College of Pharmacy, Chungbuk National University)
Turk, Ayman (College of Pharmacy, Chungbuk National University)
Jo, Yang Hee (College of Pharmacy, Chungbuk National University)
Hwang, Bang Yeon (College of Pharmacy, Chungbuk National University)
Ahn, Mi-Jeong (College of Pharmacy, Gyeongsang National University)
Lee, Mi Kyeong (College of Pharmacy, Chungbuk National University)
Publication Information
Korean Journal of Pharmacognosy / v.50, no.4, 2019 , pp. 239-244 More about this Journal
Abstract
Boehmeria pannosa (Urticaceae) is a perennial herb widely distributed in Korea. In this study, investigation on the constituents of B. pannosa was conducted by chromatographic techniques and spectroscopic analysis. As a result, nine compounds including eight phenolic compounds, 3-hydroxy-1-(4-hydroxyphenyl)propan-1-one (1), β-hydroxypropiovanillone (2), C-veratroylglycol (3), 3-hydroxy-1-(4-hydroxy-3,5-dimethoxyphenyl)-propan-1-one (4) 2,3-dihydroxy-1-(4-hydroxy-3,5-dimethoxyphenyl) -1-propanone (5), p-coumaric acid (6), 4-hydroxybenzoic acid (7), vanillic acid (8) and one lignan, (-)-(7R,8S)-dihydrodehydrodiconiferyl alcohol (9) were isolated from the EtOAc-soluble fraction of B. pannosa. Among them, compounds 5, 6 and 9 inhibited α-glucosidase inhibitory activity more than 50% at the concentration of 100 μM.
Keywords
Boehmeria pannosa; ${\alpha}$-Glucosidase; Phenolic; Lignan; Diabetes;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Cai, X. F., Jin, X., Lee, D., Yang, Y. T., Lee, K., Hong, Y. S., Lee, J. H. and Lee, J. J. (2006) Phenanthroquinolizidine alkaloids from the roots of Boehmeria pannosa potently inhibit hypoxia-inducible factor-1 in AGS human gastric cancer cells. J. Nat. Prod. 69: 1095-1097.   DOI
2 Takemoto, T. and Miyase, T. (1974) Studies on the constituents of Boehmeria tricuspis Makino. I. Yakugaku Zasshi 94: 1597-1602.   DOI
3 Xu, H., Luo, J., Huang, J. and Wen, Q. (2018) Flavonoids intake and risk of type 2 diabetes mellitus: A meta-analysis of prospective cohort studies. Medicine 97: e0686.   DOI
4 Kazmi, M., Zaib, S., Ibrar, A., Amjad, S. T., Shafique, Z., Mehsud, S., Saeed, A., Iqbal, J. and Khan, I. (2018) A new entry into the portfolio of ${\alpha}$-glucosidase inhibitors as potent therapeutics for type 2 diabetes: Design, bioevaluation and one-pot multi-component synthesis of diamine-bridged coumarinyl oxadiazole conjugates. Bioorg. Chem. 77: 190-202.   DOI
5 Pinhas-Hamiel, O. and Zeitler, P. (2007) Acute and chronic complications of type 2 diabetes mellitus in children and adolescents. Lancet 369: 1823-1831.   DOI
6 Boyle, P. J. (2007) Diabetes mellitus and macrovascular disease: Mechanisms and mediators. Am. J. Med. 120: 12-17.   DOI
7 Xiao, J., Kai, G., Yamamoto, K. and Chen, X. (2013) Advance in dietary polyphenols as ${\alpha}$-glucosidases inhibitors: A review on structure-activity relationship aspect. Crit. Rev. Food Sci. Nutr. 53: 818-836.   DOI
8 Joshi, S. R., Standl, E., Tong, N., Shah, P., Kalra, S. and Rathod, R. (2015) Therapeutic potential of ${\alpha}$-glucosidase inhibitors in type 2 diabetes mellitus: An evidence-based review. Expert Opin. Pharmacother. 16: 1959-1981.   DOI
9 Rios, J. L., Francini, F. and Schinella, G. R. (2015) Natural products for the treatment of type 2 diabetes mellitus. Planta Med. 81: 975-994.   DOI
10 Rahman, N., Muhammad, I., Gul-E-Nayab, Khan, H., Aschner, M., Filosa, R. and Daglia, M. (2019) Molecular docking of isolated alkaloids for possible ${\alpha}$-glucosidase inhibition. Biomolecules 9: E544.   DOI
11 Alam, F., Shafique, Z., Amjad, S. T. and Bin Asad, M. H. H. (2019) Enzymes inhibitors from natural sources with antidiabetic activity: A review. Phytother Res. 33: 41-54.   DOI
12 Santos, C. M. M., Freitas, M. and Fernandes, E. (2018) A comprehensive review on xanthone derivatives as ${\alpha}$-glucosidase inhibitors. Eur. J. Med. Chem. 157: 1460-1479.   DOI
13 Naveen, J. and Baskaran, V. (2018) Antidiabetic plantderived nutraceuticals: a critical review. Eur. J. Nutr. 57: 1275-1299.   DOI
14 Nakasone, Y., Takara, K., Wada, K., Tanaka, J., Yogi, S. and Nakatani, N. (1996) Antioxidative compounds isolated from kokuto, non-centrifugal cane sugar. Biosci. Biotech. Biochem. 60: 1714-1716.   DOI
15 Jacubert, M., Provot, O., Peyrat, J. F., Hamze, A., Brion, J. D. and Alami, M. (2010) p-Toluenesulfonic acid-promoted selective functionalization of unsymmetrical arylalkynes: a regioselective access to various arylketones and heterocycles. Tetrahedron 66: 3775-3787.   DOI
16 Karonen, M., Hamalainen, M., Nieminen, R., Klika, K. D., Loponen, J., Ovcharenko, V. V., Moilanen, E. and Pihlaja, K. (2004) Phenolic extractives from the bark of Pinus sylvestris L. and their effects on inflammatory mediators nitric oxide and prostaglandin $E_2$. J. Agric. Food Chem. 52: 7532-7540.   DOI
17 Li, L. and Seeram, N. P. (2010) Maple syrup phytochemicals include lignans, coumarins, a stilbene, and other previously unreported antioxidant phenolic compounds. J. Agric. Food Chem. 58: 11673-11679.   DOI
18 Sivakumar, S., Reddy, M. L., Cowley, A. H. and Vasudevan, K. V. (2010) Synthesis and crystal structures of lanthanide 4-benzyloxy benzoates: Influence of electron-withdrawing and electron-donating groups on luminescent properties. Dalton Trans. 39: 776-786.   DOI
19 Lee, T. H., Kuo, Y. C., Wang, G. J., Kuo, Y. H., Chang, C. I., Lu, C. K. and Lee, C. K. (2002) Five new phenolics from the roots of Ficus beecheyana. J. Nat. Prod. 65: 1497-1500.   DOI
20 Nilsson, M., Duarte, I. F., Almeida, C., Delgadillo, I., Goodfellow, B. J., Gil, A. M. and Morris, G. A. (2004) High-resolution NMR and diffusion-ordered spectroscopy of port wine. J. Agric. Food Chem. 52: 3736-3743.   DOI
21 Gonzalez-Baro, A. C., Parajon-Costa, B. S., Franca, C. A. and Pis-Diez, R. (2008) Theoretical and spectroscopic study of vanillic acid. J. Mol. Struct. 889: 204-210.   DOI
22 Hanawa, F., Shiro, M. and Hayashi, Y. (1997) Heartwood constituents of Betula maximowicziana. Phytochemistry 45: 589-595.   DOI
23 Akter, K. M., Kim, H. J., Khalil, A. A. K., Park, W. S., Lee, M. K., Park, J. H. and Ahn, M. J. (2018) Inner morphological and chemical differentiation of Boehmeria species. J. Nat. Med. 72: 409-423.   DOI
24 이동혁 (2013) 한국의 야생화 바로 알기, 이비락, 서울, p 858.