Browse > Article

Changes in the Contents of Phenolic Components in the Stem of Acanthopanax koreanum Depending on Extracting Batches  

Kim, Sung Gi (Department of Oriental Medical Food & Nutrition, Semyung University)
Lee, Jae Bum (Department of Oriental Medical Food & Nutrition, Semyung University)
Cho, Soon Hyun (School of Industrial Bio-Pharmaceutical Science, Semyung University)
Ko, Sung Kwon (Department of Oriental Medical Food & Nutrition, Semyung University)
Publication Information
Korean Journal of Pharmacognosy / v.50, no.2, 2019 , pp. 124-132 More about this Journal
Abstract
This study compared the contents of phenolic components depending on the extracting conditions of Acanthopanax koreanum stem to provide basic information for developing Acanthopanax koreanum-based functional foods. Our findings show that the content of total phenolic component peaked at 16 hours of extraction (WAK-16, 7.22%) and when water extracted at $100^{\circ}C$. However, 11-hours water extraction (WAK-11) showed highest eleutheroside B concentration of 1.32%, a main component of A. koreanum, and the level of chlorogenic acid concentration was the highest when 1-hour water extraction (WAK-1) was conducted, being 2.12%. Moreover, highest concentration of eleutheroside E was observed in 16-hours water extraction (WAK-16) as 1.49%. With 60-hours water extraction (WAK-60), the content of syringaresinol, an active phenolic aglycon substance, concentration was the highest with the value of 0.10%. Isofraxidin showed the highest concentration of water extract(0.09%) for 20 hours (WAK-20) and 0.42% for sinapyl alcohol[16 hours (WAK-16)].
Keywords
Phenolic components; Acanthopanax koreanum; Eleutheroside B; Chlorogenic acid; Eleutheroside E; Syringaresinol;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Yook, C. S. (1997) Asia Saeng-Yak-Do-Gam, 359-362, Kyungwon media, Seoul.
2 한국생약학교수협의회 (2004) 본초학, 305-308, 대한약사회, 서울.
3 전국한의과대학 본초학교수 (1994) 본초학, 283-284, 영림사, 서울.
4 고성권 (2016) 한방생약학, 128-129, 진영사, 서울.
5 Ovodov, Y. S., Frolova, G. M., Nefedova, M. Y. and Elyakov, G. B. (1996) The glycosides of Eleutherococcus senticosus Max I. Isolation and some properties of eleutherosides B and E. Khim. Prkrodn. Soedin. 1: 3-7.
6 Ovodov, Y. S. and Frolova, G. M. (1971) Triterpenoidal glycosides of Eleuterococcus sessiliflorus leaves II. Khim. Prkrodn. Soedin. 1: 618-622.
7 Lim, H., Min, D. S., Yun, H. E., Kim, K. T., Sun, Y. N., Dat, L. D., Kim, Y. H. and Kim, H. P. (2017) Impressic acid from Acanthopanax koreanum, possesses matrix metalloproteinase-13 down-regulating capacity and protects cartilage destruction. J. Ethnopharmacol. 209: 73-81.   DOI
8 Park, M. J. and Bae, Y. S. (2016) Fermented Acanthopanax koreanum root extract reduces UVB- and $H_2O_2$-induced senescence in human skin fibroblast cells. J. Microbiol. Biotechnol. 26: 1224-1233.   DOI
9 Wei, C., Tan, C. K., Xiaoping, H. and Junqiang, J. (2015) Acanthoic acid inhibits LPS-induced inflammatory response in human gingival fibroblasts. Inflammation 38: 896-901.   DOI
10 Jung, M. G., Do, G. M., Shin, J. H., Ham, Y. M., Park, S. Y. and Kwon, O. (2013) Acanthopanax koreanum Nakai modulates the immune response by inhibiting TLR 4-dependent cytokine production in rat model of endotoxic shock. Nutr. Res. Pract. 7: 460-465.   DOI
11 Yook, C. S. (2001) Medicinal herbs of Acanthopanax in Asia, 1-174, Kyungwon Media, Seoul.
12 An, H. J., Yook, C. S., Kim, H. C. and Ko, S. K. (2017) Measurement of characteristic phytochemical levels in different Acanthopanax Species by HPLC. Yakhak Hoeji 61: 90-95.   DOI
13 An, H. J., Nam, Y. M., Yang, B. W., Park, J. D., Yook, C. S., Kim, H. C. and Ko, S. K. (2017) The comparison of phytochemical components from the berry of Acanthopanax species. Kor. J. Pharmacogn. 48: 5-9.
14 Zhao, L. S., An, Q., Qin, F. and Xiong, Z. L. (2014) Simulataneous determination of six constituents in the fruit of Acanthopanax sessiliflorus (Rupr. et maxim.) seem. by HPLC-UV. Nat. Prod. Res. 7: 500-502.
15 Liu, J., Zhang, Z., Guo, Q., Dong, Y., Zhao, Q. and Ma, X. (2918) Syringin prevents bone loss in ovariectomized mice via TRAF6 mediated inhibition of NF-${\kappa}$B and stimulation of PI3K/AKT. Phytomedicine. 42: 43-50.   DOI
16 Kim, B., Kim, M. S. and Hyun, C. K. (2017) Syringin attenuates insulin resistance via adiponectin-mediated suppression of low-grade chronic inflammation and ER stress in high-fat diet-fed mice. Biochem. Biophys. Res. Commun. 488: 40-45.   DOI
17 Zhang, A., Liu, Z., Sheng, L. and Wu, H. J. (2017) Protective effects of syringin against lipopolysaccharide-induced acute lung injury in mice. Surg. Res. 209: 252-257.   DOI
18 Li, F., Zhang, N., Wu, Q., Yuan, Y., Yang, Z., Zhou, M., Zhu, J. and Tang, Q. (2017) Syringin prevents cardiac hypertrophy induced by pressure overload through the attenuation of autophagy. Int. J. Mol. Med. 39: 199-207.   DOI
19 Lall, N., Kishore, N., Binneman, B., Twilley, D., van de Venter, M., du Plessis-Stoman, D., Boukes, G. and Hussein, A. (2015) Cytotoxicity of syringin and 4-methoxycinnamyl alcohol isolated from Foeniculum vulgare on selected human cell lines. Nat. Prod. Res. 29: 1752-1756.   DOI
20 He, C., Chen, X., Zhao, C., Qie, Y., Yan, Z. and Zhu, X. (2014) Eleutheroside E ameliorates arthritis severity in collagen-induced arthritis mice model by suppressing inflammatory cytokine release. Inflammation 5: 1533-1543.
21 Ahn, J., Um, M. Y., Lee, H., Jung, C. H., Heo, S. H. and Ha, T. Y. (2013) Eleutheroside E, an active component of Eleutherococcus senticosus, ameliorates insulin resistance in type 2 diabetic db/db mice. Evid. Based Complement Alternat. Med. 2013: 934183.
22 Lall, N., Kishore, N., Binneman, B., Twilley, D., Plessis-Stoman, D., Boukes, G. and Hussein, A. (2015) Cytotoxicity of syringin and 4-methoxycinnamyl alcohol isolated from Foeniculum vulgare on selected human cell lines. Nat. Prod. Res. 29: 1752-1756.   DOI
23 Gong, X., Zhang, L., Jiang, R., Wang, C. D., Yin, X. R. and Wan, J. Y. (2014) Hepatoprotective effects of syringin on fulminant hepatic failure induced by D-galactosamine and lipopolysaccharide in mice. J. Appl. Toxicol. 34: 265-271.   DOI
24 Song, Y. Y., Li, Y. and Zhang, H. Q. (2010) Therapeutic effect of syringin on adjuvant arthritis in rats and its mechanisms. Yao Xue Xue Bao 45: 1006-1011.
25 Li, C., Wang, X. Y., Hu, X. W., Fang, H. T. and Qiao, S. Y. (2008) Determination of eleutheroside B in antifatigue fraction of Acanthopanax senticosus by HPLC. Zhongguo Zhong Yao Za Zhi 33: 2800-2802.
26 Niu, H. S., Liu, I. M., Cheng, J. T., Lin, C. L. and Hsu, F. L. (2008) Hypoglycemic effect of syringin from Eleutherococcus senticosus in streptozotocin-induced diabetic rats. Planta Med. 74: 109-113.   DOI
27 Miyazawa, M., Utsunomiya, H., Inada, K., Yamada, T., Okuno, Y., Tanaka, H. and Tatematsu, M. (2006) Inhibition of Helicobacter pylori motility by (+)-syringaresinol from unripe Japanese apricot. Biol. Pharm. Bull. 29: 172-173.   DOI
28 Cho, S., Cho, M., Kim, J., Kaeberlein, M., Lee, S. J. and Suh, Y. (2015) Syringaresinol protects against hypoxia / reoxygenation-induced cardiomyocytes injury and death by destabilization of HIF-1${\alpha}$ in a FOXO3-dependent mechanism. Oncotarget. 6: 43-55.   DOI
29 Chung, B. H., Kim, S., Kim, J. D., Lee, J. J., Baek, Y. Y., Jeoung, D., Lee, H., Choe, J., Ha, K. S., Won, M. H., Kwon, Y. G. and Kim, Y. M. (2012) Syringaresinol causes vasorelaxation by elevating nitric oxide production through the phosphorylation and dimerization of endothelial nitric oxide synthase. Exp. Mol. Med. 44: 191-201.   DOI
30 Park, B. Y., Oh, S. R., Ahn, K. S., Kwon, O. K. and Lee, H. K. (2008) (-)-Syringaresinol inhibits proliferation of human promyelocytic HL-60 leukemia cells via G1 arrest and apoptosis, Int. Immunopharmacol. 8: 967-973.   DOI
31 Choi, J., Shin, K. M., Park, H. J., Jung, H. J., Kim, H. J., Lee, Y. S., Rew, J. H. and Lee, K. T. (2004) Anti-inflammatory and antinociceptive effects of sinapyl alcohol and its glucoside syringin. Planta Med. 70: 1027-1032.   DOI
32 Kim, J., Cho, S. Y., Kim, S. H., Cho, D., Kim, S., Park, C. W., Shimizu, T., Cho, J. Y., Seo, D. B. and Shin, S. S. (2017) Effects of Korean ginseng berry on skin antipigmentation and antiaging via FoxO3a activation, J. Ginseng Res. 41: 277-283.   DOI
33 Cui, Y., Zhang, Y. and Liu, G. (2014) Syringin may exert sleep-potentiating effects through the NOS/NO pathway. Fundam. Clin. Pharmacol. 29: 178-184.   DOI