Browse > Article

Neuroprotective Effect of Taraxacum platycarpum Extract Against Glutamate-induced Oxidative Stress in HT22 Cells  

Lee, HyeonWoo (Department of Medical Biomaterials Engineering, College of Biomedical science, Kangwon National University)
Ma, Choong Je (Department of Medical Biomaterials Engineering, College of Biomedical science, Kangwon National University)
Publication Information
Korean Journal of Pharmacognosy / v.50, no.2, 2019 , pp. 118-123 More about this Journal
Abstract
Glutamate acts as an important neurotransmitter in brain. However, high concentration of glutamate showed an excitatory neurotoxicity and resulted to neuronal cell death. Neuronal cell death is known for one of the reason of Alzheimer's disease, a neurodegenerative disease. We tried to find neuroprotective medicinal plants by neuroprotection activity against glutamate injured HT22 cells as a model system. In the course of bioscreening of various medicinal plants, Taraxacum platycarpum extract showed significant neuroprotective activity. We tried to elucidate mechanisms of neuroprotective activity. T. platycarpum extract reduced ROS and intracellular $Ca^{2+}$ concentration increased by glutamate induced neurotoxicity. In addition, mitochondrial membrane potential was restored to the control level. Also, glutathione level, glutathione reductase and glutathione peroxidase activity were increased by T. platycarpum extract treatment. These data suggested that T. platycarpum showed neuroprotective activity via antioxidative activity.
Keywords
Taraxacum platycarpum; Alzheimer's disease; ROS; Neuroprotection; Antioxidant;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Swerdlow, R. H. (2007) Pathogenesis of Alzheimer's disease. Clin. Interv. Aging. 2: 347.
2 Hynd, M. R., Scott, H. L. and Dodd, P. R. (2004) Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer's disease. Neurochem. Int. 45: 583-595.   DOI
3 Choi, D. W. (1985) Glutamate neurotoxicity in cortical cell culture is calcium dependent. Neurosci. Let. 58: 293-297.   DOI
4 Tan, S., Wood, M. and Maher, P. (1998) Oxidative stress induces a form of programmed cell death with characteristics of both apoptosis and necrosis in neuronal cells. J. Neurochem. 71: 95-105.   DOI
5 Liu, J., Li, L. and Suo, W. Z. (2009) HT22 hippocampal neuronal cell line possesses functional cholinergic properties. Life Sci. 84: 267-271.   DOI
6 Fukui, M., Song, J. H., Choi, J., Choi, H. J. and Zhu, B. T. (2009) Mechanism of glutamate-induced neurotoxicity in HT22 mouse hippocampal cells. Euro. J. pharm. 617: 1-11.   DOI
7 Yun, S. I., Cho, H. R. and Choi, H. S. (2002) Anticoagulant from Taraxacum platycarpum. Biosci. Biotech. Biochem. 66: 1859-1864.   DOI
8 Warashina, T., Umehara, K. and Miyase, T. (2012) Constituents from the roots of Taraxacum platycarpum and their effect on proliferation of human skin fibroblasts. Chem. Pharm. Bull. 60: 205-212   DOI
9 Jeong, J. Y., Chung, Y. B., Lee, C. C., Park, S. W. and Lee, C. K. (1991) Studies on immunopotentiating activities of antitumor polysaccharide from aerial parts of Taraxacum platycarpum. Arch. Pharm. Res. 14: 68-72.   DOI
10 Chang, M. S., M. J. Park, M. C. Jeong, D. M. Kim, and G. H. Kim. (2011) Antioxidative and antibrowning effects of Taraxacum platycarpum and Chrysanthemum indicum Extracts as natural antibrowning agents. Korean. J. Food Preserv. 18: 584-589.   DOI
11 Ho, C., Choi, E. J., Yoo, G. S., Kim, K. M. and Ryu, S. Y. (1998) Desacetylmatricarin, an anti-allergic component from Taraxacum platycarpum. Planta Med. 64: 577-578.   DOI
12 Takasaki, M., Konoshima, T., Tokuda, H., Masuda, K., Arai, Y., Shiojima, K. and Ageta, H. (1999) Anti-carcinogenic activity of Taraxacum plant. I. Biolog. Pharmaceut. Bull. 22: 602-605.   DOI
13 Han, S. H., Hwang, J. K., Park, S. N., Lee, K. H., Ko, K. I., Kim, K. S. and Kim, K. H. (2005) Potential effect of solvent fractions of Taraxacum mongolicum H. on protection of gastric mucosa. Korean. J. Food Sci. Tech. 37: 84-89.
14 Jung, Y. S., Weon, J. B., Yang, W. S., Ryu, G., & Ma, C. J. (2018) Neuroprotective effects of Magnoliae Flos extract in mouse hippocampal neuronal cells. Sci. rep. 8: 1-6.   DOI
15 Ankarcrona, M., Dypbukt, J. M., Bonfoco, E., Zhivotovsky, B., Orrenius, S., Lipton, S. A., Nicotera, P. (1995) Glutamateinduced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron. 15: 961-973.   DOI
16 Albrecht, P., Lewerenz, J., Dittmer, S., Noack, R., Maher, P. and Methner, A. (2010) Mechanisms of oxidative glutamate toxicity: the glutamate/cystine antiporter system xc as a neuroprotective drug target. CNS. Neurolog. Disorders Drug Targets. 9: 373-382.   DOI
17 Randall, R. D. and Thayer, S. A. (1992) Glutamate-induced calcium transient triggers delayed calcium overload and neurotoxicity in rat hippocampal neurons. J. Neurosci. 12: 1882-1895.   DOI
18 Ly, J. D., Grubb, D. R. and Lawen, A. (2003) The mitochondrial membrane potential (${\Delta}{\psi}$ m) in apoptosis; an update. Apoptosis. 8: 115-128.   DOI
19 Koga, M., Serritella, A. V., Messmer, M. M., Hayashi-Takagi, A., Hester, L. D., Snyder, S. H., Sawa. A. and Sedlak, T. W. (2011) Glutathione is a physiologic reservoir of neuronal glutamate. Biochem. Biophysic. Res. Commun. 409: 596-602.   DOI
20 Fabiyi, O. A., Atolani, O., Adeyemi, O. S., Olatunji, G. A. (2012) Antioxidant and Cytotoxicity of ${\beta}$-Amyrin acetate fraction from Bridelia ferruginea Leaves. Asian. Pacif. Jour. Tropic. Biomed. 2: 981-984.   DOI