Browse > Article

Research Trend of Antiviral Natural Products for Companion Animal  

Kang, Byeong Ku (College of Pharmacy, Chungnam National University)
Yang, Seo Young (College of Pharmacy, Chungnam National University)
Kim, Young Ho (College of Pharmacy, Chungnam National University)
Publication Information
Korean Journal of Pharmacognosy / v.50, no.1, 2019 , pp. 1-10 More about this Journal
Abstract
Recently, companion animal culture has grown rapidly and mature, raising interest in preventing and treating animal diseases. In particular, viral infection was a serious threat to companion animal health because there was no proper antiviral drugs. Synthetic antiviral drugs have limitations such as low efficiency, toxicity, and occurrence of resistant viruses. Therefore, attempts to find new anti-viral drugs from natural sources have continued. This review focused on the natural products and active substances that exhibit antiviral activity against three viruses: canine distemper virus (CDV), canine parvovirus (CPV), and feline calicivirus (FCV) that cause fatal diseases in dogs and cats. Natural plant extracts, flavonoids, polysaccharides, alkaloids and saponins showed antiviral activity with various mechanisms and differences in activity depending on the structure. Especially, quercetin and epigallocatechin-3-gallate (EGCG) showed antiviral activity through a multi-mechanism that interferes with the attachment and penetration stages of the virus and inhibits the viral polymerase within the cell. Some natural plant extracts showed a virucidal activity and showed the potential effect as a preventative agent to prevent the viral infection. This review is expected to provide research trend on the development of antiviral natural products for companion animals.
Keywords
Compainon animal; Antiviral activity; Canine distemper virus; Canine parvovirus; Feline calicivirus;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Wagner, E. K., Hewlett, M. J., Bloom, D. C. and Camerini, D. (1999) Basic virology (Vol. 3). Blackwell Science, San Francisco.
2 Kitazato, K., Wang, Y. and Kobayashi, N. (2007) Viral infectious disease and natural products with antiviral activity. Drug Discov. Today Ther. Strateg.1: 14-22.
3 Perera, C. and Efferth, T. (2012) Antiviral medicinal herbs and phytochemicals. J. Pharmacogn. 3: 45-48.
4 De Clercq, E. R. I. K. (1997) In search of a selective antiviral chemotherapy. Clin. Microbiol. Rev. 10: 674-693.   DOI
5 Barros, A. V., Melo, M. S. and Simoni, I. C. (2012) Screening of Brazilian plants for antiviral activity against animal herpesviruses. J. Med. Plants Res. 6: 2261-2265.
6 강병구 (2018) 수의사처방제 시행 후 인식현황 및 개선방안. 충남대학교 대학원 석사학위논문.
7 Martella, V., Elia, G. and Buonavoglia, C. (2008) Canine distemper virus. Vet. Clin. North. Am. Small. Anim. Pract. 38: 787-797.   DOI
8 Anis, E., Newell, T. K., Dyer, N. and Wilkes, R. P. (2018) Phylogenetic analysis of the wild-type strains of canine distemper virus circulating in the United States. Virol. J. 15: 118.   DOI
9 Silin, D., Lyubomska, O., Ludlow, M., Duprex, W. P. and Rima, B. K. (2007) Development of a challenge-protective vaccine concept by modification of the viral RNA-dependent RNA polymerase of canine distemper virus. J. Virol. 81: 13649-13658.   DOI
10 Ek-Kommonen, C., Sihvonen, L., Pekkanen, K., Rikula, U. and Nuotio, L. (1997) Outbreak of canine distemper in vaccinated dogs in Finland. Vet. Rec. 141: 380-382.   DOI
11 Elia, G., Belloli, C., Cirone, F., Lucente, M. S., Caruso, M., Martella, V., Decaro N., Buonavoglia C. and Ormas, P. (2008) In vitro efficacy of ribavirin against canine distemper virus. Antiviral Res. 77: 108-113.   DOI
12 라정찬, 이종은, 송대섭, 권남훈, 박봉균, 박용호 (2003) 천연물을 이용한 살균 및 살바이러스 효과에 관한 연구. 한국식품위생안전성학회지. 18: 183-188.
13 Gonzalez-Burquez, M. D. J., Gonzalez-Diaz, F. R., Garcia-Tovar, C. G., Carrillo-Miranda, L., Soto-Zarate, C. I., Canales-Martínez, M. M., Penieres-Carrillo, J. G., Cruz-Sanchez, T. A. and Fonseca-Coronado, S. (2018) Comparison between in vitro antiviral effect of Mexican propolis and three commercial flavonoids against canine distemper virus. Evid. Based. Complement. Alternat. Med. 2018: 1-8
14 Daglia, M. (2012) Polyphenols as antimicrobial agents. Curr. Opin. Biotechnol. 23: 174-181.   DOI
15 Huang, S., Zhang, C. P., Wang, K., Li, G. Q. and Hu, F. L. (2014) Recent advances in the chemical composition of propolis. Molecules 19: 19610-19632.   DOI
16 Kujumgiev, A., Tsvetkova, I., Serkedjieva, Y., Bankova, V., Christov, R. and Popov, S. (1999) Antibacterial, antifungal and antiviral activity of propolis of different geographic origin. J. Ethnopharmacol. 64, 235-240.   DOI
17 Chan, G. C. F., Cheung, K. W. and Sze, D. M. Y. (2013) The immunomodulatory and anticancer properties of propolis. Clin. Rev. Allergy Immunol. 44: 262-273.   DOI
18 Bagla, V. P., McGaw, L. J. and Eloff, J. N. (2012) The antiviral activity of six South African plants traditionally used against infections in ethnoveterinary medicine. Vet. Microbiol. 155, 198-206.   DOI
19 Chattopadhyay, D., Chawla-Sarkar, M., Chatterjee, T., Dey, R. S., Bag, P., Chakraborti, S. and Khan, M. T. H. (2009) Recent advancements for the evaluation of anti-viral activities of natural products. N. Biotechnol. 25: 347-368.   DOI
20 Jassim, S. A. and Naji, M. A. (2003) Novel antiviral agents: a medicinal plant perspective. J. Appl. Microbiol. 95: 412-427.   DOI
21 Sanchez, L. M., Melchor, G., Alvarez, S. and Bulnes, C. (1998) Caracterizacionquimica y toxicologica de unaformulacioncicatrizante de Rhizophora mangle L. Rev. Salud. Anim. 20: 69-72.
22 Thapa, M., Kim, Y., Desper, J., Chang, K. O. and Hua, D. H. (2012) Synthesis and antiviral activity of substituted quercetins. Bioorg. Med. Chem. Lett. 22: 353-356.   DOI
23 de Armas, E., Scagliarini, A., Battilani, M., Alfonso, P. and Marrero, E. (2018) In vitro antiviral activity of Rhizophora mangle L. aqueous bark extract and the butanolic fraction against canine distemper virus and bovine herpes virus type 1. Rev. Salud. Anim. 40.
24 de Armas, E., Escobar, A., Faure, R., Marrero, E., Bligh, A. S., Branford-White, C. J. and White, K. N. (2016) Stimulation of Interleukin-2 [IL] Release by Rhizophora mangle Bark Aqueous Extracts and its Fractions. Eur. J. Med. Plants. 15: 1-10.
25 Tapas, A. R., Sakarkar, D. M. and Kakde, R. B. (2008) Flavonoids as nutraceuticals: a review. Trop. J. Pharm. Res. 7: 1089-1099.
26 Cushnie, T. T. and Lamb, A. J. (2005) Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 26: 343-356.   DOI
27 Carvalho, O. V., Botelho, C. V., Ferreira, C. G. T., Ferreira, H. C. C., Santos, M. R., Diaz, M. A. N., Oliveira, T. T., Soares-Martins, J. A. P., Almeida, M. R. and Junior, A. S. (2013) In vitro inhibition of canine distemper virus by flavonoids and phenolic acids: implications of structural differences for antiviral design. Res. Vet. Sci. 95: 717-724.   DOI
28 Formica, J. V. and Regelson, W. (1995) Review of the biology of quercetin and related bioflavonoids. Food. Chem. Toxicol. 33: 1061-1080.   DOI
29 Kim, Y., Narayanan, S. and Chang, K. O. (2010) Inhibition of influenza virus replication by plant-derived isoquercetin. Antiviral Res. 88: 227-235.   DOI
30 Gallina, L., Dal Pozzo, F., Galligioni, V., Bombardelli, E. and Scagliarini, A. (2011) Inhibition of viral RNA synthesis in canine distemper virus infection by proanthocyanidin A2. Antiviral Res. 92: 447-452.   DOI
31 Wu, Z. M., Yu, Z. J., Cui, Z. Q., Peng, L. Y., Li, H. R., Zhang, C. L., Shen, H. Q., Yi, P. F. and Fu, B. D. (2017) In vitro antiviral efficacy of caffeic acid against canine distemper virus. Microb. Pathog. 110: 240-244.   DOI
32 Gonzalez, M. E., Alarcon, B. and Carrasco, L. (1987) Polysaccharides as antiviral agents: antiviral activity of carrageenan. Antimicrob. Agents Chemother. 31: 1388-1393.   DOI
33 Mu, L., Zhang, Y., Zhang, M., Li, L., Zhang, Y. and Liu, S. (2009) Antiviral activities of pinon shell polysaccharide on CDV and CPV in vitro. Chin. J. Vet. Sci. 29: 1111-1114.
34 Blunden, G. (2001) Biologically active compounds from marine organisms. Phytother. Res. 15: 89-94.   DOI
35 Goddard, A., Leisewitz, A. L. (2010) Canine parvovirus. Vet. Clin. North. Am. Small. Anim. Pract. 40: 1041-1053.   DOI
36 Trejo-Avila, L. M., Morales-Martinez, M. E., Ricque-Marie, D., Cruz-Suarez, L. E., Zapata-Benavides, P., Moran-Santibanez, K. and Rodriguez-Padilla, C. (2014) In vitro anticanine distemper virus activity of fucoidan extracted from the brown alga Cladosiphon okamuranus. Virusdisease 25: 474-480.   DOI
37 Damonte, E. B., Matulewicz, M. C. and Cerezo, A. S. (2004) Sulfated seaweed polysaccharides as antiviral agents. Curr. Med. Chem. 11: 2399-2419.   DOI
38 Singethan, K., Hiltensperger, G., Kendl, S., Wohlfahrt, J., Plattet, P., Holzgrabe, U. and Schneider-Schaulies, J. (2010) N-(3-Cyanophenyl)-2-phenylacetamide, an effective inhibitor of morbillivirus-induced membrane fusion with low cytotoxicity. J. Gen. Virol. 91: 2762-2772.   DOI
39 Mira, F., Purpari, G., Lorusso, E., Di Bella, S., Gucciardi, F., Desario, C., Macaluso, G., Decaro, N. and Guercio, A. (2018) Introduction of Asian canine parvovirus in Europe through dog importation. Transbound. Emerg. Dis. 65: 16-21.   DOI
40 Miranda, C., Parrish, C. R. and Thompson, G. (2016) Epidemiological evolution of canine parvovirus in the Portuguese domestic dog population. Vet. Microbiol. 183: 37-42.   DOI
41 Martin, V., Najbar, W., Gueguen, S., Grousson, D., Eun, H. M., Lebreux, B. and Aubert, A (2002). Treatment of canine parvoviral enteritis with interferon-omega in a placebo-controlled challenge trial. Vet. Microbiol. 89: 115-127.   DOI
42 Mylonakis, M. E., Kalli, I. and Rallis, T. S. (2016) Canine parvoviral enteritis: an update on the clinical diagnosis, treatment, and prevention. Vet. Med. 7: 91.
43 Kudi, A. C. and Myint, S. H. (1999) Antiviral activity of some Nigerian medicinal plant extracts. J. Ethnopharmacol. 68: 289-294.   DOI
44 Choi, H. J., Song, J. H., Park, K. S. and Kwon, D. H. (2009) Inhibitory effects of quercetin 3-rhamnoside on influenza A virus replication. Eur. J. Pharm. Sci. 37: 329-333.   DOI
45 Qiu, H., Xie, H., Liu, J. and Zhu, Z. (2016) Review of traditional chinese herbs used in the clinical treatment of canine parvovirus infection. Am. J. Tradit. Chin. Vet. Med. 11: 63-69
46 Feng, H. B., Zeng, X. Y., Liu, J., Zhu, Z. R., Du, L. L. and Lv, X. (2012) Study on activity of antivirus of eight Chinese herbal medicine ingredients on canine parvovirus in vitro [J]. Chin. J. Vet. Sci. 6: 18.
47 Wang, Y., Chen, Y., Du, H., Yang, J., Ming, K., Song, M. and Liu, J. (2017) Comparison of the anti-duck hepatitis A virus activities of phosphorylated and sulfated Astragalus polysaccharides. Exp. Biol. Med. 242: 344-353.   DOI
48 Feng, H., Fan, J., Yang, S., Zhao, X. and Yi, X. (2017) Antiviral activity of phosphorylated Radix Cyathulae officinalis polysaccharide against Canine Parvovirus in vitro. Int. J. Biol. Macromol. 99: 511-518.   DOI
49 Wu, W., Li, R., Li, X., He, J., Jiang, S., Liu, S. and Yang, J. (2015) Quercetin as an antiviral agent inhibits influenza A virus (IAV) entry. Viruses 8: 6.   DOI
50 Carvalho, O. V., Oliveira, F. S., Saraiva, G. L., Botelho, C. V., Ferreira, H. C. C., Santos, M. R., Silva Júnior, A. and Almeida, M. R. (2013) Antiviral potencial of quercetin in canine parvovirus. Arq. Bras. Med. Vet. Zootec. 65: 353-358.   DOI
51 Radford, A. D., Coyne, K. P., Dawson, S., Porter, C. J. and Gaskell, R. M. (2007) Feline calicivirus. Vet. Res. 38: 319-335.   DOI
52 Jimenez, L., Chiang, M. (2006) Virucidal activity of a quaternary ammonium compound disinfectant against feline calicivirus: a surrogate for norovirus. Am. J. Infect. Control. 34: 269-273.   DOI
53 Mahmood, M. S., Martinez, J. L., Aslam, A., Rafique, A., Vinet, R., Laurido, C., Hussain, I., Abbas, R. A., Khan, A. and Ali, S. (2016) Antiviral effects of green tea (Camellia sinensis) against pathogenic viruses in human and animals (a mini-review). Afr. J. Tradit. Complement. Altern. Med. 13: 176-184.   DOI
54 Tree, J. A., Adams, M. R. and Lees, D. N. (2005) Disinfection of feline calicivirus (a surrogate for Norovirus) in wastewaters. J. Appl. Microbiol. 98: 155-162.   DOI
55 Aboubakr, H. A., El-Banna, A. A., Youssef, M. M., Al-Sohaimy, S. A. and Goyal, S. M. (2014) Antiviral effects of Lactococcuslactis on feline calicivirus, a human norovirus surrogate. Food. Environ. Virol. 6: 282-289.   DOI
56 서동주 (2017) 허브추출물과 플라보노이드의 식중독바이러스 억제 효과 및 항바이러스기전. 중앙대학교 대학원 박사학위논문.
57 Martin, K. W. and Ernst, E. (2003) Antiviral agents from plants and herbs: a systematic review. Antivir. Ther. 8: 77-90.
58 Lin, L. T., Hsu, W. C. and Lin, C. C. (2014) Antiviral natural products and herbal medicines. J. Tradit. Complement. Med. 4: 24-35.   DOI
59 Kim, K. L., Kim, Y. M., Lee, E. W., Lee, D. S. and Lee, M. S. (2009) Screening of antiviral activity from natural plants against feline calicivirus. J. Life Sci. 19: 928-933.   DOI
60 Xu, J., Xu, Z. and Zheng, W. (2017) A review of the antiviral role of green tea catechins. Molecules 22: 1337.   DOI
61 Lee, M. H., Lee, B. H., Jung, J. Y., Cheon, D. S., Kim, K. T. and Choi, C. (2011) Antiviral effect of Korean red ginseng extract and ginsenosides on murine norovirus and feline calicivirus as surrogates for human norovirus. J. Ginseng. Res. 35: 429.   DOI
62 Lee, M. H., Seo, D. J., Kang, J. H., Oh, S. H. and Choi, C. (2014) Expression of antiviral cytokines in Crandell-Reese feline kidney cells pretreated with Korean red ginseng extract or ginsenosides. Food. Chem. Toxicol. 70: 19-25.   DOI
63 Guo, Z., Chen, S., Liang, J. and Luo, X. (2010) Study on hypericin soluble powder against canine distemper virus in vitro. Vet. Sci. China 40: 201-204.
64 Min, S. K., Park, Y. K., Park, J. H., Jin, S. H. and Kim, K. W. (2004) Screening of antibacterial activity from hot water extracts of indigenous plants. J. Life Sci. 14: 951-962.   DOI
65 Mukhtar, M., Arshad, M., Ahmad, M., Pomerantz, R. J., Wigdahl, B. and Parveen, Z. (2008) Antiviral potentials of medicinal plants. Virus Res. 131: 111-120.   DOI
66 Abad, M. J., Bermejo, P., Palomino, S. S., Carrasco, L. and Chiriboga, X. (1999) Antiviral activity of some South American medicinal plants. Phytother. Res. 13: 142-146.   DOI
67 Sumithira, P., Mangala, S. D., Sophie, A. M. and Latha, C. P. (2012) Antiviral and antioxidant activities of two medicinal plants. Int. J. Curr. Sci. 256-261.
68 Agrios, G. N. (1988) In Plant Pathology. 325-450, Academic Press. Inc., New York.
69 권순배 (2005) 식물기원의 천연물 항바이러스 소재(素材) 탐색의 연구동향. 생물학연구정보센터 BioWave. 7: 1-2.
70 Baxter, H., Harborne, J. B. and Moss, G. P. (1998) Phytochemical dictionary: a handbook of bioactive compounds from plants. 483-498, CRC press, Philadelphia.
71 민상기, 박은희, 박연경, 권순목, 김남호, 정영아, 진성현, 유평종 (2009) 자생식물 열수추출액의 항바이러스 효능검색. 보건환경연구원보 19: 9-19.
72 Oh, Y. I., Kim, N. A., Kim, Y. H., Lee, T. H. and Lee, Y. S. (2013) Recent advances on the study of Hsp90 inhibitory natural products. Kor. J. Pharmacogn. 44: 209-219.
73 Zheng, J., He, J. G., Ji, B. P., Li, Y. and Zhang, X. F. (2007) Antihyperglycemic activity of Prunella vulgaris L. in streptozotocin-induced diabetic mice. Asia Pac. J. Clin. Nutr. 16: 427-431.
74 Rajbhandari, M., Wegner, U., Julich, M., Schoepke, T. and Mentel, R. (2001) Screening of Nepalese medicinal plants for antiviral activity. J. Ethnopharmacol. 74: 251-255.   DOI
75 Sohail, M. N., Rasul, F., Karim, A., Kanwal, U. and Attitalla, I. H. (2011) Plant as a source of natural antiviral agents. Asian J. Anim. Vet. Adv. 6: 1125-1152.   DOI
76 Schnitzler, P., Schon, K. and Reichling, J. (2001) Antiviral activity of Australian tea tree oil and eucalyptus oil against herpes simplex virus in cell culture. Pharmazie 56: 343-347.
77 De Logu, A., Loy, G., Pellerano, M. L., Bonsignore, L. and Schivo, M. L. (2000) Inactivation of HSV-1 and HSV-2 and prevention of cell-to-cell virus spread by Santolinainsularis essential oil. Antiviral Res. 48: 177-185.   DOI
78 Ahmad, A., Davies, J., Randall, S. and Skinner, G. R. B. (1996) Antiviral properties of extract of Opuntiastreptacantha. Antiviral Res. 30: 75-85.   DOI
79 Glatthaar-Saalmüller, B., Sacher, F. and Esperester, A. (2001) Antiviral activity of an extract derived from roots of Eleutherococcussenticosus. Antiviral Res. 50: 223-228.   DOI
80 De Clercq, E. (2000) Current lead natural products for the chemotherapy of human immunodeficiency virus (HIV) infection. Med. Res. Rev. 20: 323-349.   DOI
81 Lin, Y. M., Flavin, M. T., Schure, R., Chen, F. C., Sidwell, R., Barnard, D. I., Huffmann, J. H. and Kern, E. R. (1999) Antiviral activities of biflavonoids. Planta Med. 65: 120-125.   DOI
82 Wang, G. F., Shi, L. P., Ren, Y. D., Liu, Q. F., Liu, H. F., Zhang, R. J., Li, Z., Zhu, F. H., He, P. L., Tang, W., Tao, P. Z., Li, C., Zhao, W. M. and Zuo, J. P. (2009) Anti-hepatitis B virus activity of chlorogenic acid, quinic acid and caffeic acid in vivo and in vitro. Antiviral Res. 83: 186-190.   DOI
83 이서윤 (2009) 현대 학국사회에서 '애완동물'의 사회학적 의미. 부산대학교 대학원 석사학위논문.
84 농림축산식품부 (2015) 동물보호에 대한 국민의식 조사결과. 서울