Browse > Article

Anti-oxidative Effect of Salvia miltiorrhiza Bunge in Caenorhabditis elegans  

Kim, Yeong Jee (College of Pharmacy, Woosuk University)
Kim, Jun Hyeong (College of Pharmacy, Woosuk University)
Noh, Yun Jeong (College of Pharmacy, Woosuk University)
Kim, Su Jin (College of Pharmacy, Woosuk University)
Hwang, In Hyun (College of Pharmacy, Woosuk University)
Kim, Dae Keun (College of Pharmacy, Woosuk University)
Publication Information
Korean Journal of Pharmacognosy / v.49, no.4, 2018 , pp. 322-327 More about this Journal
Abstract
Methanol extract of Salvia miltiorrhiza Bunge (Labiatae) root was investigated to research the anti-oxidative activity, by using a Caenorhabditis elegans model system. The methanol extract of this plant showed significant DPPH radical scavenging and superoxide quenching activities. Ethyl acetate soluble fraction of the methanol extract that showed the most potent DPPH radical scavenging and superoxide quenching activities. The ethyl acetate fraction was tested on its activities of superoxide dismutase (SOD), catalase, and oxidative stress tolerance in C. elegans. Furthermore, in order to see if regulation of stress-response genes is responsible for the increased stress tolerance of the ethyl acetate fraction treated C. elegans, we checked SOD-3 expression using a transgenic strain. Consequently, the ethyl acetate fraction of S. miltiorrhiza root increased the catalase and SOD activities in a dose-dependent manner in C. elegans. Besides, the ethyl acetate fraction-treated CF1553 worms showed higher SOD-3::GFP intensity than the non-treated ones.
Keywords
Salvia miltiorrhiza Bunge; Caenorhabditis elegans; Anti-oxidative effect; Catalase; SOD;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kim, H. N., Seo, H. W., Kim, B. S., Lim H. J., Lee, H, N., Park, J. S., Yoon, Y. J., Oh, J. W., Oh, M. J., Kwon, J., Oh, C. H., Cha, D. S. and Jeon, H. (2015) Lindera obtusiloba extends lifespan of Caenorhabditis elegans. Nat. Prod. Sci. 21: 128-133.
2 Lee, E. Y., Shim, Y. H., Chitwood, D. J., Hwang, S. B., Lee, J. and Paik, Y. K. (2005) Cholesterol-producing transgenic Caenorhabditis elegans lives longer due to newly acquired enhanced stress resistance. Biochem. Biophys. Res. Commun. 328: 929-936.   DOI
3 Davalli, P., Mitic, T., Caporali, A., Lauriola, A. and D'Arca, D. (2016) ROS, cell senescence, and novel molecular mechanisms in aging and age-related diseases. Oxid. Med. Cell Longev. doi: 10.1155/2016/3565127.   DOI
4 Saidi Merzouk, A., Hafida, M., Medjdoub, A., Loukidi, B., Cherrak, S., Merzouk, S. A. and Elhabiri, M. (2017) Alterations of hepatocyte function with free radical generators and reparation or prevention with coffee polyphenols. Free Radic. Res. 51: 294-305.   DOI
5 Wu, C. F., Hong, C., Klauck, S. M., Lin, Y. L. and Efferth, T. (2015) Molecular mechanisms of rosmarinic acid from Salvia miltiorrhiza in acute lymphoblastic leukemia cells. J. Ethnopharmacol. 176: 55-68.   DOI
6 Luceri, C., Bigagli, E., Femia, A. P., Caderni, G., Giovannelli, L. and Lodovici, M. (2017) Aging related changes in circulating reactive oxygen species (ROS) and protein carbonyls are indicative of liver oxidative injury. Toxicol. Rep. doi: 10.1016/j.toxrep.2017.12.017   DOI
7 Merksamer, P. I., Liu, Y., He, W., Hirschey, M. D., Chen, D. and Verdin, E. (2013) The sirtuins, oxidative stress and aging: an emerging link. Aging (Albany NY) 5: 144-150.
8 Cedikova, M., Pitule, P., Kripnerova, M., Markova, M. and Kuncova, J. (2016) Multiple roles of mitochondria in aging processes. Physiol. Res. 65(Supplementum 5): S519-S531.
9 Vera Saltos, M. B., Naranjo Puente, B. F., Milella, L., De Tommasi, N., Dal Piaz, F. and Braca, A. (2015) Antioxidant and free radical scavenging activity of phenolics from Bidens humilis. Planta Med. 81: 1056-1064.   DOI
10 Niki, E. (2016) Antioxidant capacity of foods for scavenging reactive oxidants and inhibition of plasma lipid oxidation induced by multiple oxidants. Food Funct. 7: 2156-2168.   DOI
11 Gomathi, D., Ravikumar, G., Kalaiselvi, M., Vidya, B. and Uma, C. (2015) In vitro free radical scavenging activity of ethanolic extract of the whole plant of Evolvulus alsinoides (L.) L. Chin. J. Integr. Med. 21: 453-458.   DOI
12 Farias, J. G., Molina, V. M., Carrasco, R. A., Zepeda, A. B., Figueroa, E., Letelier, P. and Castillo, R. L. (2017) Antioxidant therapeutic strategies for cardiovascular conditions associated with oxidative stress. Nutrients doi: 10.3390/nu9090966.   DOI
13 Cao, E. H., Liu, X. Q., Wang, J. J. and Xu, N. F. (1996) Effect of natural antioxidant tanshinone II-A on DNA damage by lipid peroxidation in liver cells. Free Radic. Biol. Med. 20: 801-806.   DOI
14 Matkowski, A., Zielinska, S., Oszmianski, J. and Lamer-Zarawska, E. (2008) Antioxidant activity of extracts from leaves and roots of Salvia miltiorrhiza Bunge, S. przewalskii Maxim., and S. verticillata L. Bioresour. Technol. 99: 7892-7896.   DOI
15 Liu, L., Zuo, Z., Lu, S., Liu, A. and Liu, X. (2017) Naringin attenuates diabetic retinopathy by inhibiting inflammation, oxidative stress and NF-${\kappa}B$ activation in vivo and in vitro. Iran J. Basic Med. Sci. 20: 813-821.
16 Jing, X., Wei, X., Ren, M., Wang, L., Zhang, X. and Lou, H. (2016) Neuroprotective effects of tanshinone I against 6-OHDA-induced oxidative stress in cellular and mouse model of Parkinson's disease through upregulating Nrf2. Neurochem. Res. 41: 779-786.   DOI
17 Shu, M., Hu, X. R., Hung, Z. A., Huang, D. D. and Zhang, S. (2016) Effects of tanshinone IIA on fibrosis in a rat model of cirrhosis through heme oxygenase-1, inflammation, oxidative stress and apoptosis. Mol. Med. Rep. 13: 3036-3042.   DOI
18 Lee, K.-I., Kim, S.-H. and Seong, R.-K. (1996) Study on antitumor effect of Salviae Miltorrhizae Radix and isolation of active compound. Korean J. Oriental Medical Pathology 10: 76-91.
19 Waqas, M. K., Saqib, N. U., Rashid, S. U., Shah, P. A., Akhtar, N. and Murtaza, G. (2013) Screening of various botanical extracts for antioxidant activity using DPPH free radical method. Afr. J. Tradit. Complement Altern. Med. 10: 452-455.   DOI
20 Sharma, S. K. and Singh, A. P. (2012) In vitro antioxidant and free radical scavenging activity of Nardostachys jatamansi DC. J. Acupunct. Meridian Stud. 5: 112-118.   DOI
21 Yoshida, T., Mori, K., Hatano, T., Okumura, T., Uehara, I., Komagoe, K., Fujita, Y. and Okuda, T. (1989) Studies on inhibition mechanism of autooxidation by tannins and flavonoids. V: Radical scavenging effects of tannins and related polyphenols on 1,1-diphenyl-2-picrylhydrazyl radical. Chem. Pharm. Bull. 37: 1919-1921.   DOI
22 Thuong, P. T., Kang, H. J., Na, M., Jin, W., Youn, U. J., Seong, Y. H., Song, K. S., Min, B. S. and Bae, K. (2007) Anti-oxidant constituents from Sedum takesimense. Phytochemistry 68: 2432-2438.   DOI
23 Brenner, S. (1974) The genetics of Caenorhabditis elegans. Genetics 77: 71-94.
24 Mekheimer, R. A., Sayed, A. A. and Ahmed, E. A. (2012) Novel 1,2,4-triazolo[1,5-a]pyridines and their fused ring systems attenuate oxidative stress and prolong lifespan of Caenorhabditis elegans. J. Med. Chem. 55: 4169-4177.   DOI
25 Aebi, H. (1984) Catalase in vitro. Method. Enzymol. 105: 121-126.