Browse > Article

Simultaneous Analysis of the Compounds of Natural Cosmetic Resources Containing Chrysanthemum zawadskii, Perilla frutescens, Rosa multiflora and their Anti-oxidative Activity  

Ham, Ha Neul (College of Pharmacy, Woosuk University)
Shrestha, Abinash Chandra (College of Pharmacy, Woosuk University)
Kim, Ju Eun (College of Pharmacy, Woosuk University)
Lee, Tae Bum (Institute of Natural Cosmetic Industry)
Yoo, Byoung Wan (Institute of Natural Cosmetic Industry)
Kim, Min Sook (HISOL Co. Ltd)
Kim, Kwang Sang (HISOL Co. Ltd)
Cha, Joon-Seok (The Garden of Naturalsolution Co. Ltd)
Lee, Yong Mun (Herbal Experiment Station of Medicinal Resources Institute A.R.E.S.)
Kim, Jeong Yeob (Herbal Experiment Station of Medicinal Resources Institute A.R.E.S.)
Leem, Jae Yoon (College of Pharmacy, Woosuk University)
Publication Information
Korean Journal of Pharmacognosy / v.49, no.4, 2018 , pp. 312-321 More about this Journal
Abstract
Recently, consumer demand for functional cosmetics containing natural ingredients has been greatly expanded. To develop the natural cosmetic materials, we selected 3 plants, Chrysanthemum zawadskii Herbich (CZ), Perilla frutescens (L.) Britton var. acuta Kudo (PF), and Rosa multiflora Thunberg (RM) which showed high total flavonoid contents (TFC), total polyphenol contents (TPC), and strong DPPH radical scavenging effect. We determined astragalin, chlorogenic acid, and rosmarinic acid as a marker compound for quantitative analysis of the content of each material and standardization of the quality standards and manufacturing standards through LC/MS analysis. HPLC-DAD was used to simultaneously analyze these marker components of three natural product complexes (Mix) and to validate the analytical method through experiments such as linearity, accuracy and precision. The detection wavelengths were set at 210, 265, and 330 nm. The detected 3 compounds from extract of CZ, PF, RM showed significant linearity ($R^2${\geq_-}$0.9947). The limit of detection (LOD) of chlorogenic acid, astragalin and rosmarinic acid were $8.29{\mu}g/ml$, $2.28{\mu}g/ml$, and $27.00{\mu}g/ml$, respectively. The limit of quantification (LOQ) of chlorogenic acid, astragalin and rosmarinic acid were $25.11{\mu}g/ml$, $6.92{\mu}g/ml$, and $81.83{\mu}g/ml$, respectively. The contents of the three indicators of Mix were 19.82-24.71 mg/g of chlorogenic acid, 43.80-46.02 mg/g of astragalin, and 46.33-48.57 mg/g of rosmarinic acid.
Keywords
Polyphenol contents; Flavonoid contents; Marker compound; Anti-oxidants; Simultaneous analysis; Natural cosmetics;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Hwang, J. K., Kim, J. M., Kim, M. S., Kim, H. R., Park, Y. J., You, Y. O., Kwon, K. B. and Lee, Y. R. (2013) Chrysanthemum zawadskii var. latilobum extracts inhibits of TPAinduced invasion by reducing MMP-9 Expression via the suppression of NF-${\kappa}B$ activation in MCF-7 Human Breast Carcinoma Cells. Korean J. Oriental Physiology & Pathology 27: 782-788.
2 Park, J. A., Jin, K. S., Kwon, H. J. and Kim, B. W. (2015) Antiobesity activity of Chrysanthemum zawadskii methanol extract. J. of Life Science. 25: 299-306.   DOI
3 Suh, K. S., Rhee, S. Y., Jung, W. W., Kim, N. J., Jang, Y. P., Kim, H. J., Kim, M. K., Choi, Y. K. and Kim, Y. S. (2013) Chrysanthemum zawadskii extract protects osteoblastic cells from highly reducing sugar-induced oxidative damage. International Journal of Molecular Medicine 32: 241-250.   DOI
4 Sung, N. Y., Park, Y. Y., Kim, Y. E., Cho, E. J., Kim, M. H., Ryu, G. H., Byun, E. H. and Park, Y. J. (2016) Immuno-modulatory activities of polysaccharides separated from Chrysanthemum zawadskii var. latilobum in Macrophage Cells. Korean J. Food Nutr. 29: 431-437.   DOI
5 Hyun, M. R., Lee, Y. S. and Park, Y. H. (2011) Antioxidantive activity and flavonoid content of Chrysanthemum zawadskii flowers. Kor. J. Hort. Sci. Technol. 29: 68-73.
6 Seo, I. Y., Kim, H. S., Jang, K. S., Yeo, M. H., Kim, H. R., Jang, B. K. and Chang, K. S. (2018) Comparison of anti-oxidative activities of Perilla frutescens extracts by extraction methods. Journal of Oil & Applied Science. 35: 12-19.
7 Park, H. Y. (2008) Skin care satisfaction with Phragmitis Rhizoma essence targeting for 20 to 30 years women. Asian J. Beauty Cosmetol. 6: 107-129.
8 Chang, I. S. (2003) Present and future of functional cosmetics. J. of the Society of Cosmetic Scientists of Korea 29: 149-178.
9 You, S. H. and Moon, J. S. (2016) A study on anti-oxidative, anti-inflammatory, and melanin inhibitory effects of Cherysanthemun sibiricum extract. J. of Korean Oil Chemists' Soc. 33: 762-770.   DOI
10 Son, H. U., Heo, J. C., Seo, M. S. and Lee, S. H. (2010) Effects of Perilla frutescens L. on anti-oxidant and antiinflammation activity. Korean J. of Food Preserv. 17: 757-761.
11 Gok, S. Y., Yu, S. A. and Lee, S. Y. (2012) Effect of Perillae Folium Extract on regulation of Type 1 allergic response in RBL-2H3 Cells. J. Korean Oriental Pediatrics 26: 36-45.
12 Lee, K. H., R. Lamichhane, S. D. Kumar., P. P. Raj, Kim, S. G. and Jung, H. J. (2016) Development of an UPLC-DAD Method for simulataneous analysis of eight marker compounds of Bulhwanggeumjeonggi-san. Kor. J. Pharmacogn. 47: 366-373.
13 You, J. S., Kim, S. H. and Shin, T. Y. (2012) Antiallergic and anti-inflammatory effects of Perilla frutescens var. acuta. Kor. J. Pharmacogn. 43: 163-166.
14 Jang, H. J., Park, J. Y. and Kim, T. T. (1991) Volatile components of Perillae Folium. Korean J. Food SCI. Technol. 23: 129-132.
15 Kwon, S. H., Wang, Z., Hwang, S. H., Kang, Y. H., Lee, J. Y. and Lim, S. S. (2017) Comprehensive evaluation of the antioxidant capacity of Perilla frutescens leaves extract and isolation of free radical scavengers using step-wise HSCCC guided by DPPH-HPLC. International Journal of Food Properties 20: 921-934.   DOI
16 Park, G. H., Lee, J. Y., Kim, D. H., Cho, Y. J. and An, B. J. (2011) Anti-oxidant and antiinflammatory effects Rosa multiflora root. J. of Life Sci. 21: 1120-1126.   DOI
17 Ha, S. E., Kim, H. D., Park, J. K., Chung, Y. O., Kim, H. J. and Park, N. B. (2009) Melanogenesis inhibition effect of Rosa multiflora extracts in B16 melanoma cells. Korean J. Plant Res. 22: 317-322.
18 Kim, J. H., Hong, S. K., Hwang, S. J., Son, S. W. and Choi, Y. S. (2012) The preclinical and clinical effects of herbal product containing Rosa mutiflora roots extracts as a main component on the hair growth promotion. Korean J. Medicinal Crop Sci. 20: 108-116.   DOI
19 Kim, H. W., Jo, H. N., Yoo, B. W., Kim, H. J. and Lee, T. B. (2018) Biological activity and cosmetic preservative effects of Rosa multiflora ethanol extracts. Korean J. Medicinal Crop Sci. 26: 308-316.
20 Ferreres, F., Fernandes, F., Pereira, D. M., Pereira, J. A., Valentao, P. and Andrade, P. B. (2009) Phenolics metabolism in insects: Pieris brassicae-Brassica oleracea var. costata ecological duo. J. Agric. Food Chem. 57: 9035-9043.   DOI
21 Hertog, M. G., Feskens, E. J., Hollman, P. C., Katan, M. B. and Kromhout, D. (1993) Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen elderly study. Lancet. 342: 1007-1011.   DOI
22 Heim. K. E., Tagliaferro, A. R. and Bobilya, D. J. (2002) Flavonoid antioxidants: chemistry, metabolism and structureactivity relationships. J. Nutr. Biochem. 13: 572-584.   DOI
23 Manach, C., Williamson, G., Morand, C., Scalbert, A. and Remesy, C. (2005) Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am. J. Clin. Nutr. 81: 230-242.   DOI
24 Lee, S., Kim, D. H., Jeon, S. J., Lee, C. H., Son, K. H., Jung, J. W., Shin, C. Y. and Ryu, J. H. (2010) Oroxylin A, a flavonoid, stimulates adult neurogenesis in the hippocampal dentate gyrus region of mice. Neurochem. Res. 35: 1725-1732.   DOI
25 Park, K. H., Kim, S. K., Choi, S. E., Kwon, J. H., Oh, M. H. and Lee., M. W. (2010) Three new stereoisomers of condensed tannins from the roots of Rosa multiflora. Chem. Pharm. Bull. 58: 1227-1231.   DOI
26 Do, J. R., Shin, D. H., Shin, H. S., Lee, S. Y., Choi, D. W., Jung, S. Y., See, H. J., Baek, S. Y. and Eom, J. Y. (2017) Method for obtaining Rosae Multiflorae Fructus extract comprising polyphenol substance from Rosae Multiflorae Fructus at high yield. PCT. WO 2017/082592 AI.
27 Cho, Y. J. (2013). Antioxidant and antimicrobial activity of Rosa multiflora Thunberg fruits extracts. Current Research on Agriculture and Life Sciences 31: 170-176.
28 Aritomi, M. (1962) On the components of the flower petals of Rosa multiflora Thunb. and Rubus hirsutus THUNB. Journal of the Pharmaceutical Society of Japan 82: 771-773.   DOI
29 Im, S. U. (1990) An experimental research of the efficancy of Boolwhangumjeonggisan. J. Int. Korean Med. 11: 15-27.
30 Kadoma, Y. and Fujisawa, S. (2008). A comparative study of the radical-scavenging activity of the phenolcarboxylic acid caffeic acid, p-coumaric acid, chlorogenic acid and ferulic acid, with or without 2-mercaptoethanol, a thiol, using the induction period method. Molecules 13: 2488-2499.   DOI
31 Yeo, J. S., Chun, S. S. and Choi, J. H. (2014) Antioxidant activities of solvent extracts form Rosa multiclora. J. of Life Science 24: 1217-1223.   DOI
32 식품의약품안전청 (2008) 건강기능식품개발자를 위한 원료 표준화 지침서. ISBN: 9788993060010 (http://dl.nanet.go.kr/SearchDetailView.do?cn=MONO1200808504)