Browse > Article

Biological Activities of Phloroglucinols and Prenylated Flavonoids from Humuli Strobilus  

Kim, Hyun Jung (College of Pharmacy and Natural Medicine Research Institute, Mokpo National University)
Yoon, Goo (College of Pharmacy and Natural Medicine Research Institute, Mokpo National University)
Cho, Young Chang (College of Pharmacy, Chonnam National University)
Lee, Ik-Soo (College of Pharmacy, Chonnam National University)
Kang, Bok Yun (College of Pharmacy, Chonnam National University)
Publication Information
Korean Journal of Pharmacognosy / v.49, no.3, 2018 , pp. 189-202 More about this Journal
Abstract
Hop cones (Humuli Strobili) are the female inflorescences of hop plants (Humulus lupulus L.) belonging to the family Cannabaceae. They have been used as herbal remedies to treat mood and sleep disturbances, and mainly to add as a bittering ingredient in brewing process. Considerable interests on pharmacological and biological activities of hop cones have been focused on their major constituents, namely, phloroglucinols (humulone, lupulone), terpenes (myrcene, humulene), and prenylated flavonoids (xanthohumol, isoxanthohumol, 6-prenylnaringenin, and 8-prenylnaringenin). The present review describes and discusses biological activity profiles of these major compounds in the hop cones.
Keywords
Humulus lupulus; Phloroglucinols; Prenylated flavonoids; Biological activity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lust, S., Vanhoecke, B., Van Gele, M., Boelens, J., Van Melckebeke, H., Kaileh, M., Vanden Berghe, W., Haegeman, G., Philippe, J., Bracke, M. and Offner, F. (2009) Xanthohumol activates the proapoptotic arm of the unfolded protein response in chronic lymphocytic leukemia. Anticancer Res. 29: 3797-3805.
2 Mi, X., Wang, C., Sun, C., Chen, X., Huo, X., Zhang, Y., Li, G., Xu, B., Zhang, J., Xie, J., Wang, Z. and Li, J. (2017) Xanthohumol induces paraptosis of leukemia cells through p38 mitogen activated protein kinase signaling pathway. Oncotarget 8: 31297-31304.
3 Shikata, Y., Yoshimaru, T., Komatsu, M., Katoh, H., Sato, R., Kanagaki, S., Okazaki, Y., Toyokuni, S., Tashiro, E., Ishikawa, S., Katagiri, T. and Imoto, M. (2017) Protein kinase A inhibition facilitates the antitumor activity of xanthohumol, a valosin-containing protein inhibitor. Cancer Sci. 108: 785-794.   DOI
4 Lee, S. H., Kim, H. J., Lee, J. S., Lee, I. S. and Kang, B. Y. (2007) Inhibition of topoisomerase I activity and efflux drug transporters' expression by xanthohumol from hops. Arch. Pharm. Res. 30: 1435-1439.   DOI
5 Gasiorowska, J., Teisseyre, A., Uryga, A. and Michalak, K. (2015) Inhibition of Kv1.3 channels in human Jurkat T cells by xanthohumol and isoxanthohumol. J. Membr. Biol. 248: 705-711.   DOI
6 Delmulle, L., Bellahcene, A., Dhooge, W., Comhaire, F., Roelens, F., Huvaere, K,, Heyerick, A., Castronovo, V. and De Keukeleire, D. (2006) Anti-proliferative properties of prenylated flavonoids from hops (Humulus lupulus L.) in human prostate cancer cell lines. Phytomedicine 13: 732-734.   DOI
7 Busch, C., Noor, S., Leischner, C., Burkard, M., Lauer, U.M. and Venturelli, S. (2015) Anti-proliferative activity of hopderived prenylflavonoids against human cancer cell lines. Wien. Med. Wochenschr. 165: 258-261.   DOI
8 Stevens, J. F., Ivancic, M., Hsu, V. L. and Deinzer, M. L. (1997) Prenylflavonoids from Humulus lupulus. Phytochemistry 44: 1575-1585.   DOI
9 Sekiguchi, F., Fujita, T., Deguchi, T., Yamaoka, S., Tomochika, K., Tsubota, M., Ono, S., Horaguchi, Y., Ichii, M., Ichikawa, M., Ueno, Y., Koike, N., Tanino, T., Nguyen, H.D., Okada, T., Nishikawa, H., Yoshida, S., Ohkubo, T., Toyooka, N., Murata, K., Matsuda, H. and Kawabata, A. (2018) Blockade of T-type calcium channels by 6-prenylnaringenin, a hop component, alleviates neuropathic and visceral pain in mice. Neuropharmacology 138: 232-244.   DOI
10 Bruneton, J. (1999) Pharmacognosy, phytochemistry, medicinal plants, 455-456, Lavoisier Publishing, Paris.
11 Stevens, J. F., Taylor, A. W. and Deinzer, M. L. (1999) Quantitative analysis of xanthohumol and related prenylflavonoids in hops and beer by liquid chromatography-tandem mass spectrometry. J. Chromatogr. A. 832: 97-107.   DOI
12 Lv, X., Chen, K. M., Ge, B. F., Ma, H. P., Song, P. and Cheng, K. (2013) Comparative study on effect of 8-prenlynaringenin and narigenin on activity of osteoclasts cultured in vitro. Zhongguo Zhong Yao Za Zhi 38: 1992-1996.
13 Lee, J. C., Kundu, J. K., Hwang, D. M., Na, H. K. and Surh, Y. J. (2007) Humulone inhibits phorbol ester-induced COX-2 expression in mouse skin by blocking activation of NF-kappaB and AP-1: IkappaB kinase and c-Jun-N-terminal kinase as respective potential upstream targets. Carcinogenesis 28: 1491-1498.   DOI
14 Ambroz, M., Bousova, I., Skarka, A., Hanusova, V., Kralova, V., Matouskova, P., Szotakova, B. and Skalova, L. (2015) The influence of sesquiterpenes from Myrica rubra on the antiproliferative and pro-oxidative effects of doxorubicin and its accumulation in cancer cells. Molecules 20: 15343-15358.   DOI
15 Honma, Y., Tobe, H., Makishima, M., Yokoyama, A. and Okabe-Kado, J. (1998) Induction of differentiation of myelogenous leukemia cells by humulone, a bitter in the hop. Leuk. Res. 22: 605-610.   DOI
16 Tobe, H., Kubota, M., Yamaguchi, M., Kocha, T. and Aoyagi, T. (1997) Apoptosis to HL-60 by humulone. Biosci. Biotechnol. Biochem. 61: 1027-1029.   DOI
17 Lamy, V., Roussi, S., Chaabi, M., Gosse, F., Schall, N., Lobstein, A. and Raul, F. (2007) Chemopreventive effects of lupulone, a hop ${\beta}$-acid, on human colon cancer-derived metastatic SW620 cells and in a rat model of colon carcinogenesis. Carcinogenesis 28: 1575-1581.   DOI
18 Brunelli, E., Minassi, A., Appendino, G. and Moro, L. (2007) 8-Prenylnaringenin, inhibits estrogen receptor-alpha mediated cell growth and induces apoptosis in MCF-7 breast cancer cells. J. Steroid Biochem. Mol. Biol. 107: 140-148.   DOI
19 Luo, D., Kang, L., Ma, Y., Chen, H., Kuang, H., Huang, Q., He, M. and Peng, W. (2014) Effects and mechanisms of 8-prenylnaringenin on osteoblast MC3T3-E1 and osteoclastlike cells RAW264.7. Food Sci. Nutr. 2: 341-350.   DOI
20 Stompor, M. Uram, L. and Podgorski, R. (2017) In vitro effect of 8-prenylnaringenin and naringenin on fibroblasts and glioblastoma cells-cellular accumulation and cytotoxicity. Molecules 22: 1092.   DOI
21 Xuan, N. T., Shumilina, E., Gulbins, E., Gu, S., Gotz, F. and Lang, F. (2010) Triggering of dendritic cell apoptosis by xanthohumol. Mol. Nutr. Food Res. 54: S214-S224.   DOI
22 Choi, J. M., Kim, H. J., Lee, K. Y., Choi, H. J., Lee, I. S. and Kang, B. Y. (2009) Increased IL-2 production in T cells by xanthohumol through enhanced NF-AT and AP-1 activity. Int. Immunopharmacol. 9: 103-107.   DOI
23 Gao, X., Deeb, D., Liu, Y., Gautam, S., Dulchavsky, S. A. and Gautam, S. C. (2009) Immunomodulatory activity of xanthohumol: inhibition of T cell proliferation, cell-mediated cytotoxicity and Th1 cytokine production through suppression of NF-kappaB. Immunopharmacol. Immunotoxicol. 31: 477-484.   DOI
24 Zhang, W., Pan, Y., Gou, P., Zhou, C., Ma, L., Liu, Q., Du, Y., Yang, J. and Wang, Q. (2018) Effect of xanthohumol on Th1/Th2 balance in a breast cancer mouse model. Oncol. Rep. 39: 280-288.
25 Cho, J. M., Yun, S. M., Choi, Y. H., Heo, J., Kim, N. J., Kim, S. H. and Kim, E. H. (2017) Xanthohumol prevents dextran sulfate sodium-induced colitis via inhibition of $IKK{\beta}$/NF-${\kappa}B$ signaling in mice. Oncotarget 9: 866-880.
26 Kiyofuji, A., Yui, K., Takahashi, K. and Osada, K. (2014) Effects of xanthohumol-rich hop extract on the differentiation of preadipocytes. J. Oleo. Sci. 63: 593-597.   DOI
27 Lamy, V., Roussi, S., Chaabi, M., Gosse, F., Lobstein, A. and Raul, F. (2008) Lupulone, a hop bitter acid, activates different death pathways involving apoptotic TRAIL-receptors, in human colon tumor cells and in their derived metastatic cells. Apoptosis 13: 1232-1242.   DOI
28 Lamy, V., Bousserouel, S., Gosse, F., Minker, C., Lobstein, A. and Raul, F. (2010) p53 Activates either survival or apoptotic signaling responses in lupulone-treated human colon adenocarcinoma cells and derived metastatic cells. Transl. Oncol. 3: 286-292.   DOI
29 Dostalek, P., Karabin, M. and Jelinek, L. (2017) Hop phytochemicals and their potential role in metabolic syndrome prevention and therapy. Molecules 22: 1761.   DOI
30 Miranda, C. L., Elias, V. D., Hay, J. J., Choi, J., Reed, R. L. and Stevens, J. F. (2016) Xanthohumol improves dysfunctional glucose and lipid metabolism in diet-induced obese C57BL/6J mice. Arch. Biochem. Biophys. 599: 22-30.   DOI
31 Aderem, A. and Underhill, D. M. (1999) Mechanisms of phagocytosis in macrophages. Annu. Rev. Immunol. 17: 593-623.   DOI
32 Lamy, V., Bousserouel, S., Gosse, F., Minker, C., Lobstein, A. and Raul, F. (2011) Lupulone triggers p38 MAPK-controlled activation of p53 and of the TRAIL receptor apoptotic pathway in human colon cancer-derived metastatic cells. Oncol. Rep. 26: 109-114.
33 Bousserouel, S., Lamy, V., Gosse, F., Lobstein, A., Marescaux, J. and Raul, F. (2011) Early modulation of gene expression used as a biomarker for chemoprevention in a preclinical model of colon carcinogenesis. Pathol. Int. 61: 80-87.   DOI
34 Tan, K. W., Cooney, J., Jensen, D., Li, Y., Paxton, J. W., Birch, N. P. and Scheepens, A. (2014) Hop-derived prenylflavonoids are substrates and inhibitors of the efflux transporter breast cancer resistance protein (BCRP/ABCG2). Mol. Nutr. Food. Res. 58: 2099-2110.   DOI
35 Aderem, A. and Ulevitch, R. J. (2000) Toll-like receptors in the induction of the innate immune response. Nature 406: 782-787.   DOI
36 Di Vito, C., Bertoni, A., Nalin, M., Sampietro, S., Zanfa, M. and Sinigaglia, F. (2012) The phytoestrogen 8-prenylnaringenin inhibits agonist-dependent activation of human platelets. Biochim. Biophys. Acta 1820: 1724-1733.   DOI
37 Hemachandra, L., Madhubhani, P., Chandrasena, R., Esala, P., Chen, S. N., Main, M., Lankin, D. C., Scism, R. A., Dietz, B. M. and Pauli, G. F. (2012) Hops (Humulus lupulus) inhibits oxidative estrogen metabolism and estrogen-induced malignant transformation in human mammary epithelial cells (MCF-10A). Cancer Prev. Res. 5: 73-81.   DOI
38 Pepper, M. S., Hazel, S. J., Humpel, M. and Schleuning, W.D. (2004) 8-prenylnaringenin, a novel phytoestrogen, inhibits angiogenesis in vitro and in vivo. J. Cell Physiol. 199: 98-107.   DOI
39 Rong, H., Boterberg, T., Maubach, J., Stove, C., Depypere, H., Van Slambrouck, S., Serreyn, R., De Keukeleire, D., Mareel, M. and Bracke, M. (2001) 8-Prenylnaringenin, the phytoestrogen in hops and beer, upregulates the function of the E-cadherin/catenin complex in human mammary carcinoma cells. Eur. J. Cell Biol. 80: 580-585.   DOI
40 Schroder, K., Hertzog, P. J., Ravasi, T. and Hume, D. A. (2004) Interferon-${\gamma}$: an overview of signals, mechanisms and functions. J. Leukoc. Biol. 75: 163-189.   DOI
41 Boehm, U., Klamp, T., Groot, M. and Howard, J. C. (1997) Cellular responses to interferon-gamma. Annu. Rev. Immunol. 15: 749-795.   DOI
42 Cho, Y. C., Kim, H. J., Kim, Y. J., Lee, K. Y., Choi, H. J., Lee, I. S. and Kang, B. Y. (2008) Differential anti-inflammatory pathway by xanthohumol in IFN-gamma and LPSactivated macrophages. Int. Immunopharmacol. 8: 567-573.   DOI
43 Cho, Y. C., You, S. K., Kim, H. J., Cho, C. W., Lee, I. S. and Kang, B. Y. (2010) Xanthohumol inhibits IL-12 production and reduces chronic allergic contact dermatitis. Int. Immunopharmacol. 10: 556-561.   DOI
44 Bogdanova, K., Roderova, M., Kolar, M., Langova, K., Dusek, M., Jost, P., Kubelkova, K., Bostik, P. and Olsovska, J. (2018) Antibiofilm activity of bioactive hop compounds humulone, lupulone and xanthohumol toward susceptible and resistant Staphylococci. Res. Microbiol. 169: 127-134.   DOI
45 Mukai, R., Horikawa, H., Lin, P. Y., Tsukumo, N., Nikawa, T., Kawamura, T., Nemoto, H. and Terao, J. (2016) 8-Prenylnaringenin promotes recovery from immobilization-induced disuse muscle atrophy through activation of the Akt phosphorylation pathway in mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 311: R1022-R1031.   DOI
46 Urmann, C., Oberbauer, E., Couillard-Despres, S., Aigner, L. and Riepl, H. (2015) Neurodifferentiating potential of 8-prenylnaringenin and related compounds in neural precursor cells and correlation with estrogen-like activity. Planta Med. 81: 305-311.   DOI
47 Franco, L., Sanchez, C., Bravo, R., Rodriguez, A., Barriga, C. and Juanez, J. C. (2012) The sedative effects of hops (Humulus lupulus), a component of beer, on the activity/rest rhythm. Acta Physiol. Hung. 99: 133-139.   DOI
48 Doddapattar, P., Radovic, B., Patankar, J. V., Obrowsky, S., Jandl, K., Nusshold, C., Kolb, D., Vujic, N., Doshi, L., Chandak, P. G., Goeritzer, M., Ahammer, H., Hoefler, G., Sattler, W. and Kratky, D. (2013) Xanthohumol ameliorates atherosclerotic plaque formation, hypercholesterolemia, and hepatic steatosis in ApoE-deficient mice. Mol. Nutr. Food Res. 57: 1718-1728.
49 Hirata, H., Yimin, Segawa, S., Ozaki, M., Kobayashi, N., Shigyo, T. and Chiba, H. (2012) Xanthohumol prevents atherosclerosis by reducing arterial cholesterol content via CETP and apolipoprotein E in CETP-transgenic mice. PLoS One 7: e49415.   DOI
50 Orhan, I. E., Jedrejek, D., Senol, F. S., Salmas, R. E., Durdagi, S., Kowalska, I., Pecio, L. and Oleszek, W. (2018) Molecular modeling and in vitro approaches towards cholinesterase inhibitory effect of some natural xanthohumol, naringenin, and acyl phloroglucinol derivatives. Phytomedicine 42: 25-33.   DOI
51 Cermak, P., Olsovska, J., Mikyska, A., Dusek, M., Kadleckova, Z., Vanicek, J., Nyc, O., Sigler, K., Bostikova, V. and Bostik, P. (2017) Strong antimicrobial activity of xanthohumol and other derivatives from hops (Humulus lupulus L.) on gut anaerobic bacteria. APMIS 125: 1033-1038.   DOI
52 Sandoval-Ramirez, B. A., M Lamuela-Raventos, R., Estruch, R., Sasot, G., Domenech, M. and Tresserra-Rimbau, A. (2017) Beer polyphenols and menopause: effects and mechanisms-a review of current knowledge. Oxid. Med. Cell Longev. 4749131.
53 Miranda, C. L., Johnson, L. A., de Montgolfier, O., Elias, V. D., Ullrich, L. S., Hay, J. J., Paraiso, I. L., Choi, J., Reed, R. L., Revel, J. S., Kioussi, C., Bobe, G., Iwaniec, U. T., Turner, R. T., Katzenellenbogen, B. S., Katzenellenbogen, J. A., Blakemore, P. R., Gombart, A. F., Maier, C. S., Raber, J. and Stevens, J. F. (2018) Non-estrogenic xanthohumol derivatives mitigate insulin resistance and cognitive impairment in highfat diet-induced obese mice. Sci. Rep. 8: 613.   DOI
54 Miyata, S., Inoue, J., Shimizu, M. and Sato, R. (2015) Xanthohumol improves diet-induced obesity and fatty liver by suppressing sterol regulatory element-binding protein (SREBP) activation. J. Biol. Chem. 290: 20565-20579.   DOI
55 Siragusa, G. R., Haas, G. J., Matthews, P. D., Smith, R. J., Buhr, R. J., Dale, N. M. and Wise, M. G. (2008) Antimicrobial activity of lupulone against Clostridium perfringens in the chicken intestinal tract jejunum and caecum. J. Antimicrob. Chemother. 61: 853-858.   DOI
56 Zolnierczyk, A. K., Maczka, W. K., Grabarczyk, M., Winska, K., Wozniak, E. and Aniol, M. (2015) Isoxanthohumol-biologically active hop flavonoid. Fitoterapia 103: 71-82.   DOI
57 Fuchimoto, J., Kojima, T., Okabayashi, T., Masaki, T., Ogasawara, N., Obata, K., Nomura, K., Hirakawa, S., Kobayashi, N., Shigyo, T., Yokota, S., Fujii, N., Tsutsumi, H., Himi, T. and Sawada, N. (2013) Humulone suppresses replication of respiratory syncytial virus and release of IL-8 and RANTES in normal human nasal epithelial cells. Med. Mol. Morphol. 46: 203-209.   DOI
58 Abdi, F., Mobedi, H. and Roozbeh, N. (2016) Hops for menopausal vasomotor symptoms: mechanisms of action. J. Menopausal Med. 22: 62-64.   DOI
59 Milligan, S. R., Kalita, J. C., Pocock, V., Van De Kauter, V., Stevens, J. F., Deinzer, M. L., Rong, H. and De Keukeleire, D. (2000) The endocrine activities of 8-prenylnaringenin and related hop (Humulus lupulus L.) flavonoids. J. Clin. Endocrinol. Metab. 85: 4912-4915.   DOI
60 Effenberger, K. E., Johnsen, S. A., Monroe, D. G., Spelsberg, T. C. and Westendorf, J. J. (2005) Regulation of osteoblastic phenotype and gene expression by hop-derived phytoestrogens. J. Steroid Biochem. Mol. Biol. 96: 387-399.   DOI
61 Seliger, J. M, Misuri, L., Maser, E. and Hintzpeter, J. (2018) The hop-derived compounds xanthohumol, isoxanthohumol and 8-prenylnaringenin are tight-binding inhibitors of human aldo-keto reductases 1B1 and 1B10. J. Enzyme Inhib. Med. Chem. 33: 607-614.   DOI
62 Ming, L. G., Lv, X., Ma, X. N., Ge, B. F., Zhen, P., Song, P., Zhou, J., Ma, H. P., Xian, C. J. and Chen, K. M. (2013) The prenyl group contributes to activities of phytoestrogen 8-prenynaringenin in enhancing bone formation and inhibiting bone resorption in vitro. Endocrinology 154: 1202-1214.   DOI
63 Lu, X., Zhou, Y., Chen, K. M., Zhao, Z., Zhou, J. and Ma, X. N. (2013) Inhibitory effect of 8-prenylnaringenin on osteoclastogensis of bone marrow cells and bone resorption activity. Yao Xue Xue Bao 48: 347-351.
64 Costa, R., Rodrigues, I., Guardao, L., Rocha-Rodrigues, S., Silva, C., Magalhaes, J., Ferreira-de-Almeida, M., Negrao, R. and Soares, R. (2017) Xanthohumol and 8-prenylnaringenin ameliorate diabetic-related metabolic dysfunctions in mice. J. Nutr. Biochem. 45: 39-47.   DOI
65 Dorn, C., Kraus, B., Motyl, M., Weiss, T.S., Gehrig, M., Scholmerich, J., Heilmann, J. and Hellerbrand, C. (2010) Xanthohumol, a chalcon derived from hops, inhibits hepatic inflammation and fibrosis. Mol. Nutr. Food Res. 54: S205-S213.   DOI
66 Weiskirchen, R., Mahli, A., Weiskirchen, S. and Hellerbrand, C. (2015) The hop constituent xanthohumol exhibits hepatoprotective effects and inhibits the activation of hepatic stellate cells at different levels. Front. Physiol. 6: 140.
67 Lou, S., Zheng, Y. M., Liu, S.L., Qiu, J., Han, Q., Li, N., Zhu, Q., Zhang, P., Yang, C. and Liu, Z. (2014) Inhibition of hepatitis C virus replication in vitro by xanthohumol, a natural product present in hops. Planta Med. 80: 171-176.
68 Fernandez-Garcia, C., Rancan, L., Paredes, S. D., Montero, C., de la Fuente, M., Vara, E. and Tresguerres, J. A. F. (2018) Xanthohumol exerts protective effects in liver alterations associated with aging. Eur. J. Nutr. doi: 10.1007/s00394-018-1657-6.   DOI
69 Philips, N., Samuel, M., Arena, R., Chen, Y. J., Conte, J., Natarajan, P., Haas, G. and Gonzalez, S. (2010) Direct inhibition of elastase and matrixmetalloproteinases and stimulation of biosynthesis of fibrillar collagens, elastin, and fibrillins by xanthohumol. J. Cosmet. Sci. 61: 125-132.
70 Suh, K. S., Chon, S. and Choi, E. M. (2018) Cytoprotective effects of xanthohumol against methylglyoxal-induced cytotoxicity in MC3T3-E1 osteoblastic cells. J. Appl. Toxicol. 38: 180-192.   DOI
71 Rancan, L., Paredes, S. D., Garcia, I., Munoz, P., Garcia, C., Lopez de Hontanar G., de la Fuente, M., Vara, E. and Tresguerres, J. A. F. (2017) Protective effect of xanthohumol against age-related brain damage. J. Nutr. Biochem. 49: 133-140.   DOI
72 Lee, I. S., Lim, J., Gal, J., Kang, J. C., Kim, H. J., Kang, B. Y. and Choi, H. J. (2011) Anti-inflammatory activity of xanthohumol involves heme oxygenase-1 induction via NRF2-ARE signaling in microglial BV2 cells. Neurochem. Int. 58: 153-160.   DOI
73 Inoue, J., Miyata, S., Shimizu, M. and Sato, R. (2018) Isoxanthohumol stimulates ubiquitin-proteasome-dependent degradation of precursor forms of sterol regulatory elementbinding proteins. Biosci. Biotechnol. Biochem. 26: 1-8.
74 Lima-Fontes, M., Costa, R., Rodrigues, I. and Soares, R. (2017) Xanthohumol restores hepatic glucolipid metabolism balance in Type 1 diabetic Wistar rats. J. Agric. Food Chem. 65: 7433-7439.   DOI
75 식품의약품안전평가원 (2013) 한약재관능검사해설서, 716. 행정간행물등록번호 11-1470550-000343-01.
76 Stevens, J. F. and Page, J. E. (2004) Xanthohumol and related prenylflavonoids from hops and beer: to your good health! Phytochemistry 65: 1317-1330.   DOI
77 Heinrich, M., Barnes, J., Gibbons, S. and Williamson, E. M. (2012) Fundamentals of pharmacognosy and phytotherapy, 242. Elsevier, Amsterdam.
78 생약학교재편찬위원회 (2018) 생약학 개정2판, 466-469. 동명사, 서울.
79 Van Cleemput, M., Cattoor, K., De Bosscher, K., Haegeman, G., De Keukeleire, D. and Heyerick, A. (2009) Hop (Humulus lupulus)-derived bitter acids as multipotent bioactive compounds. J. Nat. Prod. 72: 1220-1230.   DOI
80 Zanoli, P. and Zavatti, M. (2008) Pharmacognostic and pharmacological profile of Humulus lupulus L. J. Ethnopharmacol. 116: 383-396.   DOI
81 Liu, M., Hansen, P. E., Wang, G., Qiu, L., Dong, J., Yin, H., Qian, Z., Yang, M. and Miao, J. (2015) Pharmacological profile of xanthohumol, a prenylated flavonoid from hops (Humulus lupulus). Molecules 20: 754-779.   DOI
82 Kac, J., Plazar, J., Mlinaric, A., Zegura, B., Lah, T. T. and Filipic, M. (2008) Antimutagenicity of hops (Humulus lupulus L.): bioassay-directed fractionation and isolation of xanthohumol. Phytomedicine 15: 216-220.   DOI
83 Miranda, C. L., Yang, Y. H., Henderson, M. C., Stevens, J. F., Santana-Rios, G., Deinzer, M. L. and Buhler, D. R. (2000) Prenylflavonoids from hops inhibit the metabolic activation of the carcinogenic heterocyclic amine 2-amino-3-methylimidazo[ 4, 5-f]quinoline, mediated by cDNA-expressed human CYP1A2. Drug Metab. Dispos. 28: 1297-1302.
84 Bae, K. H. (2000) The medicinal plants of Korea, 71. Kyo-Hak Publishing Co. Ltd., Seoul.
85 Van Wyk, B. E. and Wink, M. (2004) Medicinal plants of the world, 172. Timber Press, London.
86 Albini, A., Dell'Eva, R., Vene, R., Ferrari, N., Buhler, D. R. and Noonan, D. M. (2006) Mechanisms of the antiangiogenic activity by the hop flavonoid xanthohumol: NF-kappaB and Akt as targets. FASEB J. 20: 527-529.   DOI
87 Henderson, M. C., Miranda, C. L., Stevens, J. F., Deinzer, M. L. and Buhler, D. R. (2000) In vitro inhibition of human P450 enzymes by prenylated flavonoids from hops, Humulus lupulus. Xenobiotica 30: 235-251.   DOI
88 Dietz, B. M., Kang, Y. H., Liu, G., Eggler, A. L., Yao, P., Chadwick, L. R., Pauli, G. F., Farnsworth, N. R., Mesecar, A. D., Van Breemen, R. B. and Bolton, J. L. (2005) Xanthohumol isolated from Humulus lupulus inhibits menadione-induced DNA damage through induction of quinone reductase. Chem. Res. Toxicol. 18: 1296-1305.   DOI
89 Gallo, C., Dallaglio, K., Bassani, B., Rossi, T., Rossello, A., Noonan, D. M., D'Uva, G., Bruno, A. and Albini, A. (2016) Hop derived flavonoid xanthohumol inhibits endothelial cell functions via AMPK activation. Oncotarget 7: 59917-59931.
90 Saito, K., Matsuo, Y., Imafuji, H., Okubo, T., Maeda, Y., Sato, T., Shamoto, T., Tsuboi, K., Morimoto, M., Takahashi, H., Ishiguro, H. and Takiguchi, S. (2018) Xanthohumol inhibits angiogenesis by suppressing nuclear factor-${\kappa}B$ activation in pancreatic cancer. Cancer Sci. 109: 132-140.   DOI
91 Negrao, R., Incio, J., Lopes, R., Azevedo, I. and Soares, R. (2007) Evidence for the effects of xanthohumol in disrupting angiogenic, but not stable vessels. Int. J. Biomed. Sci. 3: 279-286.
92 Negrao, R., Duarte, D., Costa, R. and Soares, R. (2013) Isoxanthohumol modulates angiogenesis and inflammation via vascular endothelial growth factor receptor, tumor necrosis factor alpha and nuclear factor kappa B pathways. Biofactors 39: 608-622.   DOI
93 Vanhoecke, B., Derycke, L., Van Marck, V., Depypere, H., De Keukeleire, D. and Bracke, M. (2005) Antiinvasive effect of xanthohumol, a prenylated chalcone present in hops (Humulus lupulus L.) and beer. Int. J. Cancer 117: 889-895.   DOI
94 Siegel, L., Miternique-Grosse, A., Griffon, C., Klein-Soyer, C., Lobstein, A., Raul, F. and Stephan, D. (2008) Antiangiogenic properties of lupulone, a bitter acid of hop cones. Anticancer Res. 28: 289-294.
95 Serwe, A., Rudolph, K., Anke, T. and Erkel, G. (2012) Inhibition of TGF-${\beta}$ signaling, vasculogenic mimicry and proinflammatory gene expression by isoxanthohumol. Invest. New Drugs 30: 898-915.   DOI
96 Shimamura, M., Hazato, T., Ashino, H., Yamamoto, Y., Iwasaki, E., Tobe, H., Yamamoto, K. and Yamamoto, S. (2001) Inhibition of angiogenesis by humulone, a bitter acid from beer hop. Biochem. Biophys. Res. Commun. 289: 220-224.   DOI
97 Jongthawin, J., Techasen, A., Loilome, W., Yongvanit, P. and Namwat, N. (2012) Anti-inflammatory agents suppress the prostaglandin E2 production and migration ability of cholangiocarcinoma cell lines. Asian Pac. J. Cancer Prev. 13: 47-51.
98 Wang, Y., Chen, Y., Wang, J., Chen, J., Aggarwal, B. B., Pang, X. and Liu, M. (2012) Xanthohumol, a prenylated chalcone derived from hops, suppresses cancer cell invasion through inhibiting the expression of CXCR4 chemokine receptor. Curr. Mol. Med. 12: 153-162.   DOI
99 Krajnovic, T., Kaluderovic, G. N., Wessjohann, L. A., Mijatovic, S. and Maksimovic-Ivanic, D. (2016) Versatile antitumor potential of isoxanthohumol: enhancement of paclitaxel activity in vivo. Pharmacol. Res. 105: 62-73.   DOI
100 Miranda, C. L., Stevens, J. F., Helmrich, A., Henderson, M. C., Rodriguez, R. J. and Yang, Y. H. (1999) Antiproliferative and cytotoxic effects of prenylated flavonoids from hops (Humulus lupulus) in human cancer cell lines. Food Chem. Toxicol. 37: 271-285.   DOI
101 Yong, W. K., Ho, Y. F. and Malek, S. N. (2015) Xanthohumol induces apoptosis and S phase cell cycle arrest in A549 nonsmall cell lung cancer cells. Pharmacogn. Mag. 11: S275-S283.   DOI
102 Yong, W. K. and Abd Malek, S. N. (2015) Xanthohumol induces growth inhibition and apoptosis in ca ski human cervical cancer cells. Evid. Based Complement. Alternat. Med. 921306.
103 Zhao, X., Jiang, K., Liang, B. and Huang, X. (2016) Anticancer effect of xanthohumol induces growth inhibition and apoptosis of human liver cancer through NF-${\kappa}B$/p53-apoptosis signaling pathway. Oncol. Rep. 35: 669-675.   DOI
104 Sun, Z., Zhou, C., Liu, F., Zhang, W., Chen, J., Pan, Y., Ma, L., Liu, Q., Du, Y., Yang, J. and Wang, Q. (2018) Inhibition of breast cancer cell survival by xanthohumol via modulation of the Notch signaling pathway in vivo and in vitro. Oncol. Lett. 15: 908-916.
105 Zhang, B., Chu, W., Wei, P., Liu, Y. and Wei, T. (2015) Xanthohumol induces generation of reactive oxygen species and triggers apoptosis through inhibition of mitochondrial electron transfer chain complex I. Free Radic. Biol. Med. 89: 486-497.   DOI