Browse > Article

Effects of Rhei Rhizoma and Moutan Cortex on Inflammation and Insulin Resistance in Endothelial Cells Stimulated with Palmitic Acid  

Lee, Joon Suh (Department of Oriental Medicine Prescription, Wonkwang University)
Lee, Jae-Cheol (Department of Oriental Medicine Prescription, Wonkwang University)
Yun, Yong-Gab (Department of Oriental Medicine Prescription, Wonkwang University)
Publication Information
Korean Journal of Pharmacognosy / v.45, no.1, 2014 , pp. 28-34 More about this Journal
Abstract
Rhei Rhizoma (RR) and Moutan cortex (MC) have been reported to have anti-inflammatory effects. However, little is known about the effects of RR and MC on endothelial inflammation and insulin resistance (IR). This study aims to investigate whether the water extracts of RR and MC could exert protection against palmitic acid (PA)-induced inflammation and IR in human umbilical vein endothelial cells (HUVECs). HUVECs were pretreated for 6 h with RR or MC, and then exposed to PA for 24 h. The levels of interleukin-6 (IL-6) and tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) were determined by enzyme-linked immunosorbant assay kits. Western blot analysis was performed for activation of nuclear factor-${\kappa}B$ (NF-${\kappa}B$) and insulin receptor substrate-1 (IRS-1). In HUVECs stimulated with PA, both RR and MC significantly inhibited the production of TNF-${\alpha}$ and IL-6 and the activation of NF-${\kappa}B$. At the same concentrations, the inhibitory effects of RR were more potent than those of MC. PA reduced insulin-induced phosphorylation of IRS-1, which was reversed by RR and MC. The results suggest that RR and MC are effective in inhibiting PA-associated endothelial inflammation and ameliorating IR by beneficial regulation of NF-${\kappa}B$ and IRS-1 activation.
Keywords
Anti-inflammation; Rhei Rhizoma; Moutan cortex; Palmitic acid; Insulin resistance;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Palsson-McDermott, E. M. and O'Neill, L. A. (2004) Signal transduction by the lipopolysaccharide receptor, Toll-like receptor-4. Immunology 113: 153-162.   DOI   ScienceOn
2 Wang, Q., Cheng, X. L., Zhang, D. Y., Gao, X. J., Zhou, L., Qin, X. Y., Xie, G. Y., Liu, K., Qin, Y., Liu, B. L. and Qin, M. J. (2013) Tectorigenin attenuates palmitate-induced endothelial insulin resistance via targeting ROS-associated inflammation and IRS-1 pathway. PLoS One 8: e66417.   DOI   ScienceOn
3 Wilcox, G. (2005) Insulin and insulin resistance. Clin. Biochem. Rev. 26: 19-39.
4 Boden, G. (2011) Obesity, insulin resistance and free fatty acids. Curr. Opin. Endocrinol. Diabetes Obes. 18: 139-143.   DOI
5 Benoit, S. C., Kemp, C. J., Elias, C. F., Abplanalp, W., Herman, J. P., Migrenne, S., Lefevre, A. L., Cruciani-Guglielmacci, C., Magnan, C., Yu, F., Niswender, K., Irani, B. G., Holland, W. L. and Clegg, D. J. (2009) Palmitic acid mediates hypothalamic insulin resistance by altering PKC-theta subcellular localization in rodents. J. Clin. Invest. 119: 2577-2589.   DOI   ScienceOn
6 Funaki, M. (2009) Saturated fatty acids and insulin resistance. J. Med. Invest. 56: 88-92.   DOI   ScienceOn
7 Gorgani-Firuzjaee, S., Bakhtiyari, S., Golestani, A. and Meshkani, R. (2012) Leukocyte antigen-related inhibition attenuates palmitate-induced insulin resistance in muscle cells. J. Endocrinol. 215: 71-77.   DOI
8 Lee, M. S., Choi, S. E., Ha, E. S., An, S. Y., Kim, T. H., Han, S. J., Kim, H. J., Kim, D. J., Kang, Y. and Lee, K. W. (2012) Fibroblast growth factor-21 protects human skeletal muscle myotubes from palmitate-induced insulin resistance by inhibiting stress kinase and NF-${\kappa}B$. Metabolism 61: 1142-1151.   DOI   ScienceOn
9 Deng, Y. T., Chang, T. W., Lee, M. S. and Lin, J. K. (2012) Suppression of free fatty acid-induced insulin resistance by phytopolyphenols in C2C12 mouse skeletal muscle cells. J. Agric. Food. Chem. 60: 1059-1066.   DOI   ScienceOn
10 Lu, Y. C., Yeh, W. C. and Ohashi, P. S. (2008) LPS/TLR4 signal transduction pathway. Cytokine 42: 145-151.   DOI   ScienceOn
11 Fu, P. K., Yang, C. Y., Tsai, T. H. and Hsieh, C. L. (2012) Moutan cortex radicis improves lipopolysaccharide-induced acute lung injury in rats through anti-inflammation. Phytomedicine 19: 1206-1215.   DOI   ScienceOn
12 Matsuda, H., Tewtrakul, S., Morikawa, T. and Yoshikawa, M. (2004) Anti-allergic activity of stilbenes from Korean rhubarb (Rheum undulatum L.): structure requirements for inhibition of antigen-induced degranulation and their effects on the release of TNF-alpha and IL-4 in RBL-2H3 cells. Bioorg. Med. Chem. 12: 4871-4876.   DOI   ScienceOn
13 Liu, K. Y., Hu, S., Chan, B. C., Wat, E. C., Lau, C. B., Hon, K. L., Fung, K. P., Leung, P. C., Hui, P. C., Lam, C. W. and Wong, C. K. (2013) Anti-inflammatory and anti-allergic activities of Pentaherb formula, Moutan Cortex (Danpi) and gallic acid. Molecules 18: 2483-2500.   DOI   ScienceOn
14 Kahn, S. E., Hull, R. L. and Utzschneider, K. M. (2006) Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444: 840-846.   DOI   ScienceOn
15 Yun, C. S., Choi, Y. G., Jeong, M. Y., Lee, J. H., and Lim, S. (2013) Moutan Cortex Radicis inhibits inflammatory changes of gene expression in lipopolysaccharide-stimulated gingival fibroblasts. J. Nat. Med. 67: 576-589.   DOI   ScienceOn
16 Du, Q., Feng, G. Z., Shen, L., Cui, J. and Cai, J. K. (2010) Paeonol attenuates airway inflammationand hyperresponsiveness in a murine model of ovalbumin-induced asthma. Can. J. Physiol. Pharmacol. 88: 1010-1016.   DOI
17 van Greevenbroek, M. M., Schalkwijk, C. G. and Stehouwer, C. D. (2013) Obesity-associated low-grade inflammation in type 2 diabetes mellitus: causes and consequences. Neth. J. Med. 71: 174-187.
18 Huang, S. and Czech, M. P. (2007) The GLUT4 glucose transporter. Cell Metab. 5: 237-252.   DOI   ScienceOn
19 Gual, P., Le Marchand-Brustel, Y. and Tanti, J. F. (2005) Positive and negative regulation of insulin signaling through IRS-1 phosphorylation. Biochimie 87: 99-109.   DOI   ScienceOn
20 Moon, M. K., Kang, D. G., Lee, J. K., Kim, J. S. and Lee, H. S. (2006) Vasodilatory and anti-inflammatory effects of the aqueous extract of rhubarb via a NO-cGMP pathway. Life Sci. 78: 1550-1557.   DOI   ScienceOn
21 Matsuda, H., Kageura, T., Morikawa, T., Toguchida, I., Harima, S. and Yoshikawa, M. (2000) Effects of stilbene constituents from rhubarb on nitric oxide production in lipopolysaccharide-activated macrophages. Bioorg. Med. Chem. Lett. 10: 323-327.   DOI   ScienceOn
22 Yoo, M. Y., Oh, K. S., Lee, J. W., Seo, H. W., Yon, G. H., Kwon, D. Y., Kim, Y. S., Ryu, S. Y. and Lee, B. H. (2007) Vasorelaxant effect of stilbenes from rhizome extract of rhubarb (Rheum undulatum) on the contractility of rat aorta. Phytother. Res. 21: 186-189.   DOI   ScienceOn
23 Lee, S. W., Hwang, B. S., Kim, M. H., Park, C. S., Lee, W. S., Oh, H. M. and Rho, M. C. (2012) Inhibition of LFA-1/ ICAM-1-mediated cell adhesion by stilbene derivatives from Rheum undulatum. Arch. Pharm. Res. 35: 1763-1770.   DOI   ScienceOn