Browse > Article

Effects of Antidiabetic Agent, Aloe QDM complex, on Intracellular Glucose Uptake  

Im, Sun-A (College of Pharmacy, Chungbuk National University)
Kim, Ki-Hyang (College of Pharmacy, Chungbuk National University)
Shin, Eunju (Univera Inc.)
Do, Seon-Gil (Univera Inc.)
Jo, Tae Hyung (Univera Inc.)
Park, Young-In (College of Pharmacy, Korea University)
Lee, Chong-Kil (College of Pharmacy, Chungbuk National University)
Publication Information
Korean Journal of Pharmacognosy / v.44, no.1, 2013 , pp. 75-82 More about this Journal
Abstract
Previous studies have shown that Aloe QDM complex, which is consisted of chromium (Cr), aloesin (ALS) and processed Aloe vera gel (PAG), exert antidiabetic activity in a high fat diet-induced mouse model of type 2 diabetes. In this study we examined the mechanism of the antidiabetic activity of the Aloe QDM complex. Rat myoblast cell line L6 cells were cultured in the presence of Cr, ALS, and PAG alone and in combinations, and then the capability of the cells to uptake glucose was examined using radiolabeled glucose. All of the 3 agents, Cr, ALS and PAG, exerted glucose uptake-enhancing activity in L6 cells. The most potent capability to uptake glucose was observed when L6 cells were cultured with the Aloe QDM complex. The activity of the Aloe QDM complex to enhance glucose uptake was prominent in conditions where existing insulin concentrations are low. We also examined the effects of the Aloe QDM complex on the plasma membrane expression of GLUT4 in L6 cells. The Aloe QDM complex increased the content of GLUT4 in the plasma membrane, while decreasing the content of GLUT4 in the light microsome. Taken together, these results show that the antidiabetic activity of the Aloe QDM complex is at least in part due to the stimulation of glucose uptake into the muscle cells, and this activity of the Aloe QDM complex is mediated through the enhancement of the translocation of GLUT4 into the plasma membrane.
Keywords
Chromium; aloesin; Processed Aloe vera gel; Insulin; Glucose uptake; GLUT4;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Offenbacher, E. G. and Pi-Sunyer, F. X. (1980) Beneficial effect of chromium-rich yeast on glucose tolerance and blood lipids in elderly subjects. Diabetes 29: 919-925.   DOI
2 Mertz, W. (1969) Chromium occurrence and function in biological systems. Physiol. Rev. 49: 163-239.
3 Michelle, Furtado, L., Poon, V. and Klip, A. (2003) GLUT4 activation: thoughts on possible mechanisms. Acta Physiol. Scand. 178: 287-296.   DOI   ScienceOn
4 Stckli, J., Fazakerley, D. J. and James, D. E. (2011) GLUT4 exocytosis. J. Cell Sci. 124: 4147-4159.   DOI
5 Anderson, R. A., Polansky, M. M., Bryden, N. A. and Bhathena, S. J. (1987) Canary, J.J. Effects of supplemental chromium on patients with symptoms of reactive hypoglycemia. Metabolism 36: 351-355.   DOI   ScienceOn
6 Vincent, J. B. (1999) Mechanisms of chromium action: lowmolecular- weight chromium-binding substance. J. Am. Coll. Nutr. 18: 6-12.   DOI
7 Chen, G., Liu, P., Pattar, G. R., Tackett, L., Bhonagiri, P., Strawbridge, A. B. and Elmendorf, J. S. (2006) Chromium activates glucose transporter 4 trafficking and enhances insulin- stimulated glucose transport in 3T3-L1 adipocytes via a cholesterol-dependent mechanism. Mol. Endocrinol. 20: 857-870   DOI   ScienceOn
8 von der Crone, S., Deppe, C., Barthel, A., Sasson, S., Joost, H. G. and Schrmann, A. (2000) Glucose deprivation induces Akt-dependent synthesis and incorporation of GLUT1, but not of GLUT4, into the plasma membrane of 3T3-L1 adipocytes. Eur. J. Cell. Biol. 79: 943-949.   DOI   ScienceOn
9 Palanivel, R., Maida, A., Liu, Y. and Sweeney, G. (2006) Regulation of insulin signalling, glucose uptake and metabolism in rat skeletal muscle cells upon prolonged exposure to resistin. Diabetologia 49: 183-190.   DOI
10 Adachi, J., Kumar, C., Zhang, Y. and Mann, M. (2007) Indepth analysis of the adipocyte proteome by mass spectrometry and bioinformatics. Mol. Cell. Proteomics 6: 1257- 1273.   DOI   ScienceOn
11 Hyun, C. K., Kim, I. Y. and Frost, S. C. (2004) Soluble fibroin enhances insulin sensitivity and glucose metabolism in 3T3-L1 adipocytes. J. Nutr. 134: 3257-3263.
12 Agarwal, O. P. (1985) Prevention of atheromatous heart disease. Angiology 36: 485-492.   DOI   ScienceOn
13 Ghannam, N., Kingston, M., Al-Meshaal, I. A., Tariq, M. and Parman, N. S., (1986) Woodhouse, N. The antidiabetic activity of aloes: preliminary clinical and experimental observations. Horm. Res. 24: 288-294.   DOI
14 Ajabnoor, M. A. (1990) Effect of aloes on blood glucose levels in normal and alloxan diabetic mice. J. Ethnopharmacol. 28: 215-220.   DOI   ScienceOn
15 Bunyapraphatsara, N., Yongchaiyudha, S. and Rungpitarangsi, V. (1996) Chokechaijaroenporn, O. Antidiabetic activity of Aloe vera L. juice. II. Clinical trial in diabetes mellitus patients in combination with glibenclamide. Phytomedicine 3: 245-248.   DOI   ScienceOn
16 Yongchaiyudha, S., Rungpitarangsi, V., Bunyapraphatsara, N. and Chokechaijaroenporn, O. (1996) Antidiabetic activity of Aloe vera L. juice. I. Clinical trial in new cases of diabetes mellitus. Phytomedicine 3: 241-243.   DOI   ScienceOn
17 Beppu, H., Nagamura, Y. and Fujita, K. (1993) Hypoglycaemic and antidiabetic effects in mice of Aloe arborescens Miller var. natalensis Berger. Phytother. Res. 7: S37-S42.   DOI   ScienceOn
18 Rajasekaran, S., Sivagnanam, K., Ravi, K. and Subramanian, S. (2004) Hypoglycemic effect of Aloe vera gel on streptozotocin- induced diabetes in experimental rats. J. Med. Food 7: 61-66.   DOI   ScienceOn
19 Rajasekaran, S., Sivagnanam, K. and Subramanian, S. (2005) Modulatory effects of Aloe vera leaf gel extract on oxidative stress in rats treated with streptozotocin. J. Pharm. Pharmacol. 57: 241-246.   DOI   ScienceOn
20 Charles, M. A., Eschwge, E. and Bennett, P. H. (1997) Noninsulin- dependent diabetes in populations at risk : the Pima Indians. Diabetes Metab., Suppl. 4: 6-9.
21 American Diabetes Association (2002) Report of the Expert Committee on the diagnosis and classification of diabetes mellitus. Diabetes Care 25: S5-S20.   DOI
22 Ferrannini, E. (1998) Insulin resistance versus insulin deficiency in non-insulin-dependent diabetes mellitus : problems and prospects. Endocr. Rev. 19: 477-490.   DOI
23 Gerich, J. E. (1998) The genetic basis of type 2 diabetes mellitus : impaired insulin secretion versus impaired insulin sensitivity. Endocr. Rev. 19: 491-503.   DOI
24 Krentz, A. J. and Bailey, C. J. (2005) Oral antidiabetic agents: current role in type 2 diabetes mellitus. Drugs 65: 385-411.   DOI   ScienceOn
25 Cheng, A. Y. and Fantus, I. G. (2005) Oral antihyperglycemic therapy for type 2 diabetes mellitus. CMAJ 172: 213-226.   DOI   ScienceOn
26 Abbas, A., Blandon, J., Rude, J., Elfar, A. and Mukherjee, D. (2012) PPAR-$\gamma$ agonist in treatment of diabetes: cardiovascular safety considerations. Cardiovasc. Hematol. Agents Med. Chem. 10: 124-134.   DOI   ScienceOn
27 Mueckler, M. (1994) Facilitative glucose transporters. Eur. J. Biochem. 219: 713-725.   DOI   ScienceOn
28 Kim, K., Kim, H., Kwon, J., Lee, S., Kong, H., Im, S.-A., Lee, Y. H., Lee, Y. R., Oh, S. T., Jo, T. H., Park, Y. I., Lee, C. K. and Kim, K. (2009) Hypoglycemic and hypolipidemic effects of processed Aloe vera gel in a mouse model of noninsulin- dependent diabetes mellitus. Phytomedicine 16: 856-863   DOI   ScienceOn
29 Kong, H., Lee, S., Shin, S., Kwon, J., Jo, T. H., Shin, E., Shim, K.-S., Park, Y. I., Lee, C. K. and Kim, K. (2010) Down-regulation of adipogenesis and hyperglycemia in diet- Induced obesity mouse model by Aloe QDM. Biomol. Ther. 18: 336-342.   DOI
30 Shin, E., Shim, K. S., Kong, H., Lee, S., Shin, S., Kwon, J., Jo, T. H., Park, Y. I., Lee, C. K. and Kim, K. (2011) Dietary aloe improves insulin sensitivity via the suppression of obesity- induced Inflammation in obese mice. Immune Netw. 11: 59-67.   DOI
31 Devaraj, S., Yimam, M., Brownell, L. A., Jialal, I., Singh, S. and Jia, Q. Effects of Aloe vera supplementation in subjects with prediabetes/metabolic syndrome. Metab. Syndr. Relat. Disord. DOI: 10.1089/met.2012.0066 [Epub ahead of print]
32 Schwarz, K. and Mertz, W. (1959) Chromium(III) and the glucose tolerance factor. Arch. Biochem. Biophys. 85: 292-295   DOI   ScienceOn
33 Tuman, R. W. and Doisy, R. J. (1977) Metabolic effects of the glucose tolerance factor (GTF) in normal and genetically diabetic mice. Diabetes 26: 820-826.   DOI
34 Rajasekaran, S., Ravi, K., Sivagnanam, K. and Subramanian, S. (2006) Beneficial effects of Aloe vera leaf gel extract on lipid profile status in rats with streptozotocin diabetes. Clin. Exp. Pharmacol. Physiol. 33: 232-237.   DOI   ScienceOn
35 Beppu, H., Shimpo, K., Chihara, T., Kaneko, T., Tamai, I., Yamaji, S., Ozaki, S., Kuzuya, H. and Sonoda, S. (2006) Antidiabetic effects of dietary administration of Aloe arborescens Miller components on multiple low-dose streptozotocin- induced diabetes in mice: investigation on hypoglycemic action and systemic absorption dynamics of aloe components. J. Ethnopharmacol. 103: 468-477.   DOI   ScienceOn
36 Park, M. Y., Kwon, H. J. and Sung, M. K. (2011) Dietary aloin, aloesin, or aloe-gel exerts anti-inflammatory activity in a rat colitis model. Life Sci. 88: 486-492.   DOI   ScienceOn
37 Lee, K. Y., Park, J. H., Chung, M. H., Park, Y. I., Kim, K. W., Lee, Y. J. and Lee, S. K. (1997) Aloesin up-regulates cyclin E/CDK2 kinase activity via inducing the protein levels of cyclin E, CDK2, and CDC25A in SK-HEP-1 cells. Biochem. Mol. Biol. Int. 41: 285-292.
38 Schwarz, K. and Mertz, W. (1957) A glucose tolerance factor and its differentiation from factor 3. Arch. Biochem. Biophys. 72: 515-518.   DOI   ScienceOn
39 Hopkins, L. L. Jr, Ransome-Kuti, O. and Majaj, A. S. (1968) Improvement of impaired carbohydrate metabolism by chromium 3 in manourished infants. Am. J. Clin. Nutr. 21: 203-211
40 Anderson, R. A. (1987) Chromium. In: trace elements in human and animal nutrition (W. Mertz, ed), 5th ed., 225-244, Academic Press, In., New York.