Browse > Article
http://dx.doi.org/10.17663/JWR.2022.24.2.123

The Status of Ramsar wetlands in India: A review of ecosystem benefits, threats, and management strategies  

Farheen, K.S. (Department of Civil and Environmental Engineering, Kongju National University)
Reyes, N.J.D.G. (Department of Civil and Environmental Engineering, Kongju National University)
Jeon, M.S. (Department of Civil and Environmental Engineering, Kongju National University)
Kim, L.H. (Department of Civil and Environmental Engineering, Kongju National University)
Publication Information
Journal of Wetlands Research / v.24, no.2, 2022 , pp. 123-141 More about this Journal
Abstract
Wetland also known as "Jheelon" in Hindi language is one of the most important natural resources, contributing various economic and ecological benefits. The study gave a short review of the current status of Ramsar wetlands in India. The wildlife species, conservation measures, and their significance in Indian wetlands were also explored in this review paper. As of 2022, there are 49 Ramsar sites in India covering approximately 1,09363.6 km2 of land. The largest Ramsar wetland is Sundarbans, while the smallest is Chandertal. It was found that preventing wetland loss is important even though studies about wetland degradation in various nations including India, caused directly by human activities is still limited. Since Monitoring and protecting natural wetlands, supporting scientific studies on preservation and restoration of wetlands, demand on imposing regulations for limiting pollutant discharges were recommended allowing researchers, policymakers, and practitioners to better maintain wetland and its ecosystem services.
Keywords
Biodiversity; Ecosystem-services; India Ramsar wetlands; Wetland conservation; Wetland threats;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 Prasad, S. N., Ramachandra, T. V., Ahalya, N., Sengupta, T., Kumar, A., Tiwari, A. K., and Vijayan, L. (2002). Conservation of wetlands of India-a review. Int. Society for Tropical Ecology, pp. 173-186.
2 Tanya, K., Tanushree, B. (2022, May 18). Central Water Commission Annual report (2010-2011). (2022, May 02). [URL: http://cwc.gov.in/sites/default/files/17_10_2011Final%20Draft%20AR%202010-11_rev.pdf].
3 Kumar. Ministry of Environment, Forest, and Climate change: Government of India. (2022, April 04). [URL: https://parivesh.nic.in/contact.aspx].
4 Ministry of Environment, Forest and Climate Change, Government of India (MoEFCC, 2020) Ramsar sites of India factsheets. (2022, April 04). [URL : https://parivesh.nic.in/contact.aspx].
5 Hughes, R. F., Grossman, D., Sowards, T. G., Marshall, J. D., and Mueller-Dombois, D. (2022). Aboveground carbon accumulation by second-growth forests after deforestation in Hawai'i. Ecological Applications. [https://doi.org/10.1002/eap.2539].   DOI
6 Yirsaw, E., Wu, W., Shi, X., Temesgen, H., and Bekele, B. (2017). Land use/land cover change modeling and the prediction of subsequent changes in ecosystem service values in a coastal area of China, the Su-Xi-Chang Region. Sustainability, pp. 1204. [https://doi.org/10.3390/su9071204].   DOI
7 Das Sharma, S. (2019). Risk assessment and mitigation measures on the heavy metal polluted water and sediment of the Kolleru Lake in Andhra Pradesh, India. Pollution, pp. 161-178. [http://doi.org/10.22059/POLL.2018.263546.493].   DOI
8 Roebeling, P., Abrantes, N., Ribeiro, S., and Almeida, P. (2016). Estimating cultural benefits from surface water status improvements in freshwater wetland ecosystems. Sci. of the total envir, pp. 219-226. [https://doi.org/10.1016/j.scitotenv.2015.12.063].   DOI
9 Chatterjee, Sudipto, Saikia, Abhinandan, Dutta, Pijush, Ghosh, Dipankar, and Worah, Sejal. (2006). Review of biodiversity in Northeast India. Background paper, pp. 13.
10 Bhatta, L. D., Chaudhary, S., Pandit, A., Baral, H., Das, P. J., and Stork, N. E. (2016). Ecosystem service changes and livelihood impacts in the Maguri-Motapung Wetlands of Assam, India. Land, pp. 15. [https://doi.org/10.3390/land5020015].   DOI
11 Chatterjee, A., and Bhattacharyya, S. (2021). Assessing the threats facing wetland mammals in India using an evidence-based conservation approach. Mammal Review, pp. 385-401. [https://doi.org/10.1111/mam.12242].   DOI
12 Cherkaoui, S. I., Hanane, S., Magri, N., El Agbani, M. A., and Dakki, M. (2015). Factors influencing species-richness of breeding waterbirds in Moroccan IBA and Ramsar wetlands: a macroecological approach. Wetlands, pp. 913-922. [https://doi.org/10.1007/s13157-015-0682-y].   DOI
13 Choudhury, M., Sharma, A., Singh, P., and Kumar, D. (2021). Impact of climate change on wetlands, concerning Son Beel, the largest wetland of Northeast, India. In Global Climate Change, pp. 393-414. Elsevier. [https://doi.org/10.1016/B978-0-12-822928-6.00006-X].   DOI
14 Das, C. R., and Mohanty, S. (2008). Integrated sustainable environmental conservation of Ansupa Lake: A famous water resource of Orissa, India. Water and Energy International, pp. 62-66.
15 Gairola, S. C. (2014). Conservation of wetlands in India: a critical review of the adequacy of law. Indian Forester, pp. 113-128.
16 Framework for Ecological Monitoring Ramsar sites and other Wetlands in India Reports. (2021). [https://wii.gov.in/images//images/documents/ganga_project/WetlandMonitoringGuidedocument.pdf].
17 Feist, M. A., Kurylo, J., and Tessene, P. Wetland mitigation site monitoring report. (2005).
18 Garg, J. K. (2015). Wetland assessment, monitoring and management in India using geospatial techniques. J. of environmental management, pp. 112-123. [https://doi.org/10.1016/j.jenvman.2013.12.018].   DOI
19 Gopal. B., and Sah M. (1995). Inventory and classification of wetlands in India. In Classification and inventory of the world's wetlands. pp. 39-48. Springer, Dordrecht.
20 Singh, R., and Thakur, D. R. (2021). Studies on rhopaloceran diversity of high altitude Chandertal Wetland in Lahaul & Spiti district of Himachal Pradesh, India. J Entomol Zool Stud, pp. 448-452. [https://doi.org/10.22271/j.ento.2021.v9.i4f.8818].   DOI
21 Dhananjai Mohan. (2020). ENVIS Centre on Wildlife and Protected Areas. (March 22, 2022). [URL: http://www.wiienvis.nic.in/].
22 Kumar. Wetlands International South Asia (WISA, 2005). (2022, April 18) [https://www.wetlands.org/publications/annualreview-2005/].
23 Kolli, M. K., Opp, C., Karthe, D., and Groll, M. (2020). Mapping of Major Land-Use Changes in the Kolleru Lake Freshwater Ecosystem by Using Landsat Satellite Images in Google Earth Engine. Water, pp. 2493. [https://doi.org/10.3390/w12092493].   DOI
24 Laiho, R. (2006). Decomposition in peatlands: Reconciling seemingly contrasting results on the impacts of lowered water levels. Soil Biology and Biochemistry, pp. 2011-2024. [https://doi.org/10.1016/j.soilbio.2006.02.017].   DOI
25 Kumar R, Pattnaik AK (2012) Chilika - an integrated management planning framework for conservation and wise use. Wetlands International South Asia and Chilika Development Authority, New Delhi. [http://hdl.handle.net/10625/52100].
26 Kumar, R., Bhatt, J. R. and Goel, S., (2017). New Delhi: Wetlands International South Asia. pp. 45.
27 DasGupta, R., and Shaw, R. (2013). Cumulative impacts of human interventions and climate change on mangrove ecosystems of South and Southeast Asia: an overview. J. of Ecosystems. [http://dx.doi.org/10.1155/2013/379429].   DOI
28 Shaikh, M. Z., and Tiwari, L. R. (2012). Sediment Quality of Sewri Mudflats, Mumbai, West Coast of India. Int. J. of Scientific and Research Publications, pp. 1.
29 Mondal, P., Reichelt-Brushett, A. J., Jonathan, M. P., Sujitha, S. B., and Sarkar, S. K. (2018). Pollution evaluation of total and acid-leachable trace elements in surface sediments of Hooghly River Estuary and Sundarban Mangrove Wetland (India). Environmental Science and Pollution Research, pp. 5681-5699. [https://doi.org/10.1007/s11356-017-0915-0].   DOI
30 Singh, A. K., Sathya, M., Verma, S., Kumar, A., and Jayakumar, S. (2021). Assessment of Anthropogenic Pressure and Population Attitude for the Conservation of Kanwar Wetland, Begusarai, India: A Case Study. Pollutants and Water Management: Resources, Strategies and Scarcity, pp. 22-46. [https://doi.org/10.1002/9781119693635.ch2].   DOI
31 Ganguly, D., Singh, G., Purvaja, R., Bhatta, R., Paneer Selvam, A., Banerjee, K., Ramesh, R. (2018). Valuing the carbon sequestration regulation service by seagrass ecosystems of Palk Bay and Chilika, India. Ocean Coast Manag, pp. 26-33. [https://doi.org/10.1016/j.ocecoaman.2017.11.009].   DOI
32 Stets, E. G., and Cotner, J. B. (2008). Littoral zones as sources of biodegradable dissolved organic carbon in lakes. Canadian J. of Fisheries and Aquatic Sciences, pp. 2454-2460. [https://doi.org/10.1139/F08-142].   DOI
33 Selvam, V. (2003). Environmental classification of mangrove wetlands of India. Current Science, pp. 757-765. [https://www.jstor.org/stable/24107579].
34 Sruthi, P., Jayalal, Liya, and Gopal, Nikita. (2016). Gender Roles in Fisheries along the Vembanad Estuarine System.
35 Stewart, K. M. (2014). Environmental change and hominin exploitation of C4-based resources in wetland/savanna mosaics. J. of human evolution, pp. 1-16. [https://doi.org/10.1016/j.jhevol.2014.10.003].   DOI
36 Tabasum, T., Bhat, P., Kumar, R., Fatma, T., and Trisal, C. L. (2009). Vegetation of the river Yamuna floodplain in the Delhi stretch, with reference to hydrological characteristics. Ecohydrology: Ecosystems, Land and Water Process Interactions, Eco hydrogeomorphology, pp. 156-163. [https://doi.org/10.1002/eco.47].   DOI
37 Dudgeon, D. (2003). The contribution of scientific information to the conservation and management of freshwater biodiversity in tropical Asia. Aquatic Biodiversity. pp. 295-314. [https://doi.org/10.1007/978-94-007-1084-9_21].   DOI
38 Omprakash,M.D. (2019).India, Environmental Management Capacity-Building. Bhopal: Indian Institute of Forest Management, 35.(2022, May 18).[URL: https://iifm.ac.in/].
39 Das, S. K., Manna, R. K., Gogoi, P., Roshith, C. M., Sajina, A. M., and Das, B. K. (2021). Quantification of Litter Fall and Estimation of Nutrient Release Through in-Situ Decomposition of Leaf Litter from Some Important Mangrove Species of Indian Sundarbans. [http://doi.org/10.21203/rs.3.rs-474958/v1].   DOI
40 Davidson, N. C. (2016). Understanding change in the ecological character of internationally important wetlands. Marine and Freshwater Research, pp. 685-686. [http://dx.doi.org/10.1071/MF16081].   DOI
41 Farheen, K. S., Reyes, N. J., and Kim, L. H. (2021). Constructed Wetlands in Treating Domestic and Industrial Wastewater in India: A Review. J. of Wetlands Research, pp. 242-251. [https://doi.org/10.17663/JWR.2021.23.3.242].   DOI
42 Flanagan, L. B., and Syed, K. H. (2011). Stimulation of both photosynthesis and respiration in response to warmer and drier conditions in a boreal peatland ecosystem. Global Change Biology, pp. 2271-2287. [https://doi.org/10.1111/j.1365-2486.2010.02378.x].   DOI
43 Gupta, S. K., and Shukla, D. P. (2016). Assessment of land use/land cover dynamics of Tso Moriri Lake, a Ramsar site in India. Environmental monitoring and assessment, pp.1-13. [https://doi.org/10.1007/s10661-016-5707-3].   DOI
44 Gopal, B. (2013). Future of wetlands in tropical and subtropical Asia, especially in the face of climate change. Aquatic sciences, pp. 39-61. [https://doi.org/10.1007/s00027-011-0247-y].   DOI
45 Jayanthi, M., Thirumurthy, S., Nagaraj, G., Muralidhar, M., and Ravichandran, P. (2018). Spatial and temporal changes in mangrove cover across the protected and unprotected forests of India. Estuarine, Coastal and Shelf Science, pp. 81-91. [https://doi.org/10.1016/j.ecss.2018.08.016].   DOI
46 Tanya, K., Tanushree, B. (2022, May 18). Central Pollution Control Board (CPCB) Annual Reports (2008-2009). [URL: http://www.cpcbenvis.nic.in/annual_report/AnnualReport_37_ANNUAL_REPORT-08-09.pdf].
47 Tiwari, S., Moghe, S., Gurnule, W. B., Bhagat, D. S., and Gunjal, A. (2022). Habitat-specific microbial community associated with the biodiversity hotspot. In Microbial Diversity in Hotspots, pp. 25-43. [https://doi.org/10.1016/B978-0-323-90148-2.00018-3].   DOI
48 Turner, R. K., Van Den Bergh, J. C., Soderqvist, T., Barendregt, A., Van Der Straaten, J., Maltby, E., and Van Ierland, E. C. (2000). Ecological-economic analysis of wetlands: scientific integration for management and policy. Ecological economics. pp. 7-23. [https://doi.org/10.1016/S0921-8009(00)00164-6].   DOI
49 Gopal, B., and Krishnamurthy, K. (1993). Wetlands of South Asia. In Wetlands of the world: Inventory, ecology, and management. Volume I, pp. 345-414. Springer, Dordrecht. [https://doi.org/10.1007/978-94-015-8212-4_10].   DOI
50 Grumbine, R. E., and Pandit, M. K. (2013). Threats from India's Himalaya dams. Science, pp. 36-37. [https://doi.org/10.1126/science.1227211].   DOI
51 Ghose, D. S. (2006). Wetlands of India and their Utilization. Estuaries, pp. 153966.
52 Kingsford, R. T., Bino, G., Finlayson, C. M., Falster, D., Fitzsimons, J. A., Gawlik, D. E., ... and Thomas, R. F. (2021). Ramsar wetlands of international importance-improving conservation outcomes. Frontiers in Environmental Science. [https://doi.org/10.3389/fenvs.2021.643367].   DOI
53 Padmavathi, P., and Srinu, G. (2017). Wetlands of India: Biodiversity, ecological services and strategies for conservation. Biodiversity assessment: Tool for conservation. (Eds Sagar A Vhanalakar and Sharadrao A Vhanalakar), Bhumi Publishing, Nigave Khalasa, Kolhapur, pp. 189-204.
54 Kumar, M. D., Sivamohan, M. V. K., and Bassi, N. (Eds.). (2012). Water Management, Food Security and Sustainable Agriculture in Developing Economies. Earthscan Studies in Water Resources Management Routledge.
55 Upadhyay, Atul Kumar; Singh, Ranjan; Singh, D. P. (2020). Restoration of Wetland Ecosystem: A Trajectory Towards a Sustainable Environment, Wetland as a Sustainable Reservoir of Ecosystem Services: Prospects of Threat and Conservation, pp. 31-43. [https://doi.org/10.1007/978-981-13-7665-8_3].   DOI
56 De Klein, J. J., and van der Werf, A. K. (2014). Balancing carbon sequestration and GHG emissions in a constructed wetland. Ecological Engineering, pp. 36-42. [https://doi.org/10.1016/j.ecoleng.2013.04.060].   DOI
57 Islam, M. S., Rahman, M. R., Shahabuddin, A. K. M., and Ahmed, R. (2010). Changes in wetlands in Dhaka city: trends and physico-environmental consequences. J. of Life and Earth Science, pp. 37-42. [https://doi.org/10.3329/jles.v5i0.7348].   DOI
58 Keller, B. D., Gleason, D. F., McLeod, E., Woodley, C. M., Airame, S., Causey, B. D., and Steneck, R. S. (2009). Climate change, coral reef ecosystems, and management options for marine protected areas. Environmental management, pp. 1069-1088. [https://doi.org/10.1007/s00267-009-9346-0].   DOI
59 Khatik, N. (2022). Wetland Creation, Restoration, and Conservation: Wetland Protection. In Handbook of Research on Monitoring and Evaluating the Ecological Health of Wetlands, pp. 17-26. [https://doi.org/10.4018/978-1-7998-9498-8.ch002].   DOI
60 Asha, C. V., Retina, I. C., and Suson, P. S. (2016). Ecosystem analysis of the degrading Vembanad wetland ecosystem, the largest Ramsar site on the Southwest Coast of India-Measures for its sustainable management. Regional Studies in Marine Science, pp. 408-421. [https://doi.org/10.1016/j.rsma.2016.06.003].   DOI
61 McLaughlin, D. L., Diamond, J. S., Quintero, C., Heffernan, J., and Cohen, M. J. (2019). Wetland connectivity thresholds and flow dynamics from stage measurements. Water Resources Research, pp. 6018-6032. [https://doi.org/10.1029/2018WR024652].   DOI
62 Chandra, K., Bharti, D., Kumar, S., Raghunathan, C., Gupta, D., Alfred, J.R.B. and Chowdhury, B.R. 2021. Faunal Diversity in Ramsar Wetlands of India, (Jointly Published by the Director, Zoological Survey of India and Wetland Division, Ministry of Environment, Forest and Climate Change, Government of India), pp. 1-292.
63 Zhang L, Wang MH, Hu J, Ho Y-S (2010) A review of published wetland research, 1991-2008: ecological engineering and ecosystem restoration. Ecol Eng 36:973-980. [https://doi.org/10.1016/j.ecoleng.2010.04.029]   DOI
64 Bennett, M. T., Gong, Y., and Scarpa, R. (2018). Hungry birds and angry farmers: Using choice experiments to assess "eco-compensation" for coastal wetlands protection in China. Ecological Economics, pp. 71-87. [https://doi.org/10.1016/j.ecolecon.2018.07.016].   DOI
65 Behera, P., Mohapatra, M., Adhya, T.K., Suar, M. (2018). Structural and metabolic diversity of rhizosphere microbial communities of Phragmites karka in a tropical coastal lagoon. Appl Soil Ecol (December 2017), pp. 0-1. [https://doi.org/10.1016/j.apsoil.2017.12.023].   DOI
66 Chandra, K., Bharti, D., Kumar, S., Raghunathan, C., Gupta, D., Alfred, J.R.B. and Chowdhury, B.R. 2021. Faunal Diversity in Ramsar Wetlands of India, (Jointly Published by the Director, Zoological Survey of India and Wetland Division, Ministry of Environment, Forest and Climate Change, Government of India), pp. 1-292.
67 Kumar. Wetlands International South Asia (WISA, 2014). (2022, April 20). [https://south-asia.wetlands.org/].
68 Kremen, C., Merenlender, A. M., and Murphy, D. D. (1994). Ecological monitoring: a vital need for integrated conservation and development programs in the tropics. Conservation biology, pp. 388-397. [https://doi.org/10.1046/j.1523-1739.1994.08020388.x].   DOI
69 Lakhmapurkar, J., Gavali, D., and Bhatt, N. (2022). Coastal Ecosystem Services of Gujarat, India: Current Challenges and Conservation Needs. In Coastal Ecosystems (pp. 305-324). Springer, Cham. [https://doi.org/10.1007/978-3-030-84255-0_13].   DOI
70 Lal, R. (2008). Carbon sequestration. Philos Trans R Soc B, pp. 815-830.
71 Amir, M., Paul, D., Samal, R.N. (2019) Sources of organic matter in Chilika lagoon, India inferred from stable C and N isotopic compositions of particulates and sediments. J Mar Syst, pp. 81-90. [https://doi.org/10.1016/j.jmarsys.2019.03.001].   DOI
72 Bennett, N. J., and Dearden, P. (2014). From measuring outcomes to providing inputs: Governance, management, and local development for more effective marine protected areas. Marine Policy, pp. 96-110. [https://doi.org/10.1016/j.marpol.2014.05.005].   DOI
73 Amezaga, J. M., Santamaria, L., and Green, A. J. (2002). Biotic wetland connectivity supporting a new approach for wetland policy. Acta oecologica, pp. 213-222. [https://doi.org/10.1016/S1146-609X(02)01152-9].   DOI
74 Nageswara Rao K, Muralikrishna G, Hema Malini B (2004) Kolleru Lake is vanishing: a revelation through digital processing of IRS-1D LISS III data. Current Science, pp. 1312-1316
75 Nayar, M. P. (1996). Hot spots of endemic plants of India. Nepal and Bhutan, TBGRI, Trivandrum, 217.
76 Nazneen, S., Madhav, S., Priya, A., and Singh, P. (2022). Coastal Ecosystems of India and Their Conservation and Management Policies: A Review. Coastal Ecosystems, pp. 1-21. [https://doi.org/10.1007/978-3-030-84255-0_1].   DOI
77 Navalgund,R.R., Kiran,K. (2012). Space Application Center (SAC). (2022, April 06). [URL: http://isro.gov.in/about-isro/space-applications-centre-sac].
78 Nayak, A., and Bhushan, B. (2022). Wetland Ecosystems and Their Relevance to the Environment: Importance of Wetlands. In Handbook of Research on Monitoring and Evaluating the Ecological Health of Wetlands, pp. 1-16. IGI Global. [https://doi.org/10.4018/978-1-7998-9498-8.ch001].   DOI
79 Nazneen, S., Singh, S., and Raju, N. J. (2019). Heavy metal fractionation in core sediments and potential biological risk assessment from Chilika lagoon, Odisha state, India. Quaternary International, pp. 370-388. [https://doi.org/10.1016/j.quaint.2018.05.011].   DOI
80 Neha, U. (2022). Ramsar Sites in India. (2022, April 06). [https://www.ixambee.com/blog/ramsar-sites-in-india-updated/].
81 Arisdason, W., and Lakshminarasimhan, P. ENVIS Resource Partner on Biodiversity. (2022, March 25). [URL: https://bsienvis.nic.in/Database_Diversity_In_India_17566.aspex].
82 Arya, A. K., Joshi, K. K., and Bachheti, A. (2020). A review on distribution and importance of wetlands in the perspective of India. J. of Applied and Natural Science, pp. 710-720.
83 Banerjee, Dhriti, Raghunathan, C., Rizvi, Anjum , Maheswaran, Gopinathan , Tripathy, Basudev , Gupta, Devanshu , M.E., Hassan. (2021). Annual Report 2020-2021 Zoological Survey of India.
84 Bassi, N., Kumar, M. D., Sharma, A., and Pardha-Saradhi, P. (2014). Status of wetlands in India: A review of extent, ecosystem benefits, threats, and management strategies. J. of Hydrology: Regional Studies, pp. 1-19. [https://doi.org/10.1016/j.ejrh.2014.07.001].   DOI
85 Bates, B., Kundzewicz, Z., and Wu, S. (2008). Climate change and water. Intergovernmental Panel on Climate Change Secretariat.
86 Barko, J. W., and James, W. F. (1998). Effects of submerged aquatic macrophytes on nutrient dynamics, sedimentation, and resuspension. In The structuring role of submerged macrophytes in lakes, pp. 197-214. Springer, New York, NY.
87 Remani, K. N., Jayakumar, P., and Jalaja, T. K. (2010). Environmental problems and management aspects of Vembanad kol wetlands in Southwest coast of India. Nature, Environment and Pollution Technology, pp. 247-254.
88 Nilabh. (1998). Indian National Trust for Art and Cultural Heritage. (March 23, 2022). [http://indiaifa.org/indian-nationaltrust-art-and-culture-heritage-intach.html].
89 Pradhan, A., and Srinivasan, V. (2022). Do dams improve water security in India? A review of post facto assessments. Water Security, 100112. [https://doi.org/10.1016/j.wasec.2022.100112].   DOI
90 Ramsar Convection of Wetlands (2018). (2022, April 04) [https://www.ramsar.org/event/ramsar-wetland-conservation-awards-2018].
91 Shiv, S.S. (2021, August 28).The Hindu news article. (2022, April 12). [https://www.thehindu.com/sci-tech/energy-and-environment/india-adds-557-new-species-to-its-fauna- zoological-survey-of-india/article36141615.ece].
92 Van Lavieren, H., Spalding, M., Alongi, D. M., Kainuma, M., Clusener-Godt, M., and Adeel, Z. (2012). Securing the future of mangroves. United Nations University, Institute for Water, Environment and Health.
93 Venkataraman, K. (2022). 250 Years of Marine Biodiversity Scenarios in India What Will Persist? In Impact of Climate Change on Hydrological Cycle, Ecosystem, Fisheries and Food Security (pp. 281-299). CRC Press.
94 Wetland Division, Ministry of Environment, Forest and Climate Change, Government of India. (2021). (2022 April, 09).
95 Roopa, V., and Vijayan, N. (2017). Detection of Land Use, Land Cover Changes in the Wetlands of Kuttanad, Kerala. Int. J. of Innovative Research in Science, Engineering and Technology, pp. 10487-10491.
96 Sahoo, A. K., Das, B. K., Lianthuamluaia, L., Raman, R. K., Meena, D. K., Roshith, C. M., ... and Sadhukhan, D. (2021). Dynamics of river flows towards sustaining floodplain wetland fisheries under climate change: A case study. Aquatic Ecosystem Health & Management, pp.72-82.
97 Jain, A., Roshnibala, S., Kanjilal, P. B., Singh, R. S., and Singh, H. B. (2007). Aquatic or semi-aquatic plants used in herbal remedies in the wetlands of Manipur, Northeastern India. Indian J. of Traditional Knowledge, pp. 346-351.
98 Verma, M., Bakshi, N., and Nair, R. P. (2001). Economic valuation of Bhoj Wetland for sustainable use. Unpublished project report for World Bank assistance to Government of India.
99 Verdhen, A. (2021). Wetland formation and reclamation in the flood prone areas: a case study in Bihar, India. In Modern Cartography Series, pp. 581-602. Academic Press. [https://doi.org/10.1016/B978-0-12-823895-0.00021-X].   DOI
100 Biswas Roy, M., Kumar Roy, P., Samal, N. R., Majumdar, A. (2012) Socio-economic valuations of Wetland based occupations of lower gangetic basin through participatory approach. Environ Nat Resour Res, pp. 30-44. [https://doi.org/10.5539/enrr.v2n4p30].   DOI
101 Biswas Roy M., Nag, S., Halder, S., and Kumar Roy, P. (2022). Assessment of wetland potential and bibliometric review: a critical analysis of the Ramsar sites of India. Bulletin of the National Research Centre, pp. 1-11. [https://doi.org/10.1186/s42269-022-00740-0].   DOI
102 Burke, L., Kura, Y., Kassem, K., Revenga, C., Spalding, M., McAllister, D., and Caddy, J. (2001). Coastal ecosystems. Washington, DC: World Resources Institute.
103 Brix, H. (1994). Use of constructed wetlands in water-pollution control-historical development, present status, and future perspectives. Water Sci Technol, pp. 209-223. [https://doi.org/10.2166/wst.1994.0413].   DOI
104 Davies, P. M., and Stewart, B. A. (2013). Aquatic biodiversity in the Mediterranean climate rivers of southwestern Australia. Hydrobiologia, pp. 215-235. [https://doi.org/10.1007/s10750-013-1600-z].   DOI
105 Leverington, F., Costa, K. L. Jose Courrau, Helena Pavese, Christoph Nolte, Melitta Marr, Lauren Coad, Neil Burgess, Bastian Bomhard, and Marc Hockings. (2010). Management effectiveness evaluation in protected areas-a global study.
106 Huang, J. C., Suarez, M. C., Yang, S. I., Lin, Z. Q., and Terry, N. (2013). Development of a constructed wetland water treatment system for selenium removal: incorporation of an algal treatment component. Environmental science & technology, pp. 10518-10525. [https://doi.org/10.1021/es4015629].   DOI
107 Joshi, P. K., Mishra, A., and Sharma, A. P. (2018). Assessment of bioaccumulation of heavy metals in Tor putitora from Lake Nainital, Uttarakhand. J. of Entom and Zool Stud, pp. 448-453.
108 Kathiresan, K. (2018). Mangrove forests of India. Current Science (00113891), pp. 976-981.
109 Loo, Y. Y., Billa, L., and Singh, A. (2015). Effect of climate change on seasonal monsoon in Asia and its impact on the variability of monsoon rainfall in Southeast Asia. Geoscience Frontiers, pp. 817-823. [https://doi.org/10.1016/j.gsf.2014.02.009].   DOI
110 Manoj, V. (2019, November 15). [URL: https://www.newindianexpress.com/cities/kochi/2019/nov/15/toxic-contamination-of-vembanad-lake-in-kochi-poses-major-health-hazard-2061853.html].
111 Mallick, J. K. (2013). Ecology, status and aberrant behavior of Bengal Tiger in the Indian Sundarban. Animal diversity, natural history and conservation, pp. 381-454.
112 Mitsch, W. J., Gosselink, J.G. (2007). Wetlands, 4th edn. Wiley, New York
113 Morris, K. (2012). Wetland connectivity: understanding the dispersal of organisms that occur in Victoria's wetlands. Heidelberg: Arthur Rylah Institute for Environmental Research, Department of Sustainability and Environment.
114 Nisari, A. R., and Sujatha, C. H. (2021). Assessment of trace metal contamination in the Kol wetland, a Ramsar site, Southwest coast of India. Regional Studies in Marine Science, pp. 101953. [https://doi.org/10.1016/j.rsma.2021.101953].   DOI
115 Osborne, L. L., and Kovacic, D. A. (1993). Riparian vegetated buffer strips in water-quality restoration and stream management. Freshwater biology, pp. 243-258. [https://doi.org/10.1111/j.1365-2427.1993.tb00761.x].   DOI
116 Dhrirti Banerjee. (2022, May 12). Indian Zoological Survey. (2022, March 03) [URL: https://zsi.gov.in/App/index.aspx].
117 Erwin, K. L. (2009). Wetlands and global climate change: the role of wetland restoration in a changing world. Wetlands Ecology and management, pp. 71-84. [https://doi.org/10.1007/s11273-008-9119-1].   DOI
118 World Commission on Dams. (2000). Dams and development: A new framework for decision-making: The report of the world commission on dams. Earthscan.
119 Wylynko, D. (1999). Prairie wetlands and carbon sequestration. Assessing Sinks under Kyoto Protocol, pp. 12-13.
120 Xu, T., Weng, B., Yan, D., Wang, K., Li, X., Bi, W., ... and Liu, Y. (2019). Wetlands of international importance: Status, threats, and future protection. Int.l J. of Environmental Research and Public Health, pp. 1818. [https://doi.org/10.3390/ijerph16101818].   DOI
121 Mishra, M., Acharyya, T., Chand, P., Santos, C. A. G., da Silva, R. M., Dos Santos, C. A. C., ... and Kar, D. (2022). Response of long-to short-term tidal inlet morphodynamics on the ecological ramification of Chilika lake, the tropical Ramsar wetland in India. Science of The Total Environment, 807, 150769. [https://doi.org/10.1016/j.scitotenv.2021.150769].   DOI
122 Mukherjee, P., Mitra, A., Zaman, S., and Mitra, A. (2021). Impact of Climate-Change-Induced Salinity Alteration on Ichthyoplankton Diversity of Indian Sundarbans. [https://doi.org/10.1007/978-3-22759-3_276-1].   DOI
123 McLaughlin, D. L., and Cohen, M. J. (2013). Realizing ecosystem services: wetland hydrologic function along a gradient of ecosystem condition. Ecological Applications, pp. 1619-1631. [https://doi.org/10.1890/12-1489.1].   DOI
124 Yan, X., An, J., Yin, Y., Gao, C., Wang, B., and Wei, S. (2022). Heavy metals uptake and translocation of typical wetland plants and their ecological effects on the coastal soil of a contaminated bay in Northeast China. Sci of The Total Environment. [https://doi.org/10.1016/j.scitotenv.2021.149871].   DOI
125 Ramsar Sites Information Service, (2020). (2022, April 04) . [https://rsis.ramsar.org/].
126 Parmar, H., Khandla, Y., and Trivedi, V. M. (2021). Habitat Preference and Distribution of Herpetofauna in the City of Rajkot and Vicinities, Gujarat. Environment and Ecology, pp. 494-505.
127 Prohibited activities of wetlands in India (https://timesofindia.indiatimes.com/india/at-41-number-of-protected-wetlands-up-50-in-a-year/articleshow/79217789.cms).
128 Ramsar Convention (RC, 2021). (2022, April 04) [http://www.indiawaterportal.org].
129 Rahman, M. M., Feeroz, M. M., Jones-Engel, L., and Hasan, M. K. (2014). Population structure and ranging patterns of Hanuman Langur (Semnopithecus entellus) in Jessore, Bangladesh. The Festschrift on the 50th Anniversary of The IUCN Red List of Threatened SpeciesTM, 91.
130 Remesan, M. P. (2019). Sustainable fishing methods for inland water bodies. ICAR: Central Institute of Fisheries Technology.
131 Roulet, N., and Moore, T. R. (2006). Browning the waters. Nature, pp. 283-284. [https://doi.org/10.1038/444283a].   DOI
132 Shah, P., and Atisa, G. (2021). The Future to Conservation of Ramsar Sites: Environmental Education And Awareness. Kenya Policy Briefs, pp. 79-80.
133 Roy, S. (2022). Preliminary Insights on the Dynamics of Flow Regime and Sediment Flux in Drainage Basin Study. In Drainage Basin Dynamics, pp. 359-381. [https://doi.org/10.1007/978-3-030-79634-1_16].   DOI
134 Sarkar, U. K., Mishal, P., Karnatak, G., Lianthuamluaia, L., Saha, S., Bandopadhyay, A., and Das Ghosh, B. (2021). Regional climatic variability and fisher's adaptation to climate-induced risks in an impacted tropical floodplain wetland: a case study. Sustainable Water Resources Management, pp. 1-12. [https://doi.org/10.1007/s40899-021-00545-5].   DOI
135 Seenivasan, R. (2013). National wetland atlas of India: A review and some inferences. Economic and Political Weekly, pp. 120-124.
136 Shivakrishna, A., Ramteke, K. K., Kesavan, S., Prasad, P., Naidu, B. C., Dhanya, M., and Abidi, Z. J. (2021). Monitoring of current land use pattern of Ramsar designated Kolleru Wetland, India using geospatial technologies. J. of Envi Biology, pp. 106-111. [http://doi.org/10.22438jeb/42/1/MRN-1404].   DOI
137 Singh, H. S. (2003). Marine protected areas in India. Indian. J. of Marine Sciences, pp. 226-233.
138 Singh, Y., Singh, G., Khattar, J. S., Barinova, S., Kaur, J., Kumar, S., and Singh, D. P. (2022). Assessment of water quality condition and spatiotemporal patterns in selected wetlands of Punjab, India. Environmental Science and Pollution Research, pp. 2493-2509. [https://doi.org/10.1007/s11356-021-15590-y].   DOI
139 Nath, B., Ni-Meister, W., and Choudhury, R. (2021). Impact of urbanization on land use and land cover change in Guwahati city, India, and its implication on declining groundwater level. Groundwater for Sustainable Development, pp. 100500. [https://doi.org/10.1016/j.gsd.2020.100500].   DOI
140 Finlayson, C., Rastogi, G., Mishra, D. R., and Pattnaik, A. K. (2020). Ecology, Conservation, and Restoration of Chilika Lagoon, India Introduction. Wetlands, pp. 1-6. [https://doi.org/10.1007/978-3-030-33424-6_4].   DOI