Browse > Article
http://dx.doi.org/10.17663/JWR.2021.23.3.234

Effect Analysis of Pulley on Performance of Micro Hydropower in Free Surface Vortex  

Choi, In-Ho (Department of Civil Engineering, Seoil University)
Kim, Jong-Woo (Department of Civil Engineering, Seoil University)
Chung, Gi-Soo (Korea Institute of Industrial Technology(KITECH)/Hanjung Energy Networks Co., Ltd.)
Publication Information
Journal of Wetlands Research / v.23, no.3, 2021 , pp. 234-241 More about this Journal
Abstract
This paper contributes to the understanding of the effect of pulley on the performance of the vortex turbine in free water surface. The experimental work was to analyze the rotation, voltage and current of the turbine due to physical factors (vortex height, velocity, effective head, etc.) at flow rates ranging from 0.0069 to 0.0077 m3/s in the inlet channel. As a result, the experimental values showed that voltage, current and rotational speed of the vortex turbine decreased with increasing the pulley ratio regardless of the blade type. The efficiency of straight blade and twisted blade was 52 % at the gear ratio of 0.45, whereas the efficiency of small twisted blade was 54 % at the pulley ratio of 0.21. The highest amount of the energy generated by the water free vortex turbine occurred within a pulley ratio of 0.5. The efficiency of this vortex turbine was observed at 0.2 ~ 58 % depending on the pulley ratio.
Keywords
Vortex turbine; Free surface vortex; Blade; Pulley;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Choi, IH, Kim, JW and Chung, GS (2020). Experimental Study of Micro Hydropower with Vortex Generation at Lower Head Water. J. of Wetlands Research Vol. 22. No. 2. pp. 121-129. https://doi.org/10.17663/JWR.2020.22.2.121   DOI
2 Gheorghe-Marius, M and Tudor, S (2013). Energy capture in the gravitational vortex water flow. J. of Marine Technology & Environment vol 1. http://worldcat.org/issn/18446116
3 Mulligan, S, Casserly, J and Sherlock, R (2016). Experimental and numerical modelling of free-surface turbulent flows in full air-core water vortices. In Advances in Hydroinformatics; Springer: Berlin/Heidelberg, Germany, pp. 549-569.
4 Muller, S, Cleynen, O, Hoerner, S, Lichtenberg, N and Thevenin, D (2018). Numerical analysis of the compromise between power output and fish-friendliness in a vortex power plant. J. Ecohydraulics, 3, 86-98. https://doi.org/10.1080/24705357.2018.1521709   DOI
5 Nicolet, C, Zobeiri, A, Maruzewski, P and Avellan, F (2011). Experimental investigations on upper part load vortex rope pressure fluctuations in francis turbine draft tube. International Journal of Fluid Machinery and Systems, vol. 4, no. 1, pp. 179-190. https://doi.org/10.5293/IJFMS.2011.4.1.179   DOI
6 Nishi, Y and Inagaki, T (2017). Performance and flow field of a gravitation vortex type water turbine. Int. J. Rotating Mach. 2017, Article ID 2610508, pp. 1-11. https://doi. org/10.1155/2017/2610508   DOI
7 Odgaard, AJ (1986). Free-surface air core vortex. J. of Hydraulic Engineering, vol. 112, no. 7, pp. 610-620. https://doi.org/10.1061/(ASCE)0733-9429(1986)112:7(610)   DOI
8 Powalla, D, Hoerner, S, Cleynen, O, Muller, N, Stamm, J and Thevenin, D (2021). A Computational Fluid Dynamics Model for a Water Vortex Power Plant as Platform for Etho- and Ecohydraulic Research. Energies, 14, 639. https://doi.org/10.3390/en14030639   DOI
9 Vu, T, Koller, M, Gauthier, M and Deschenes, C (2011). Flow simulation and efficiency hill chart prediction for a Propeller turbine. International Journal of Fluid Machinery and Systems, vol. 4, no. 2, pp. 243-254. DOI: 10.1088/1755- 1315/12/1/012040   DOI
10 Shabara, HM, Yaakob, OB, Ahmed, YM and Elbatran, AH (2015). CFD Simulation of Water Gravitation Vortex Pool Flow for Mini Hydropower Plants. J. Teknologi 74(5), pp. 77-81. https://doi.org/10.11113/jt.v74.4645   DOI
11 Wanchat, S and Suntivarakorn, R (2012). Preliminary Design of a Vortex Pool for Electrical Generation. J. of Computational and Theoretical Nanoscience, vol. 13, no. 1, pp. 173-177. DOI: 10.1166/asl.2012.3855   DOI
12 Wardhana, EM, Santoso, A and Ramdani, AR (2019). Analysis of Gottingen 428 Airfoil Turbine Propeller Design with Computational Fluid Dynamics Method on Gravitational Water Vortex Power Plant. International J. of Marine Engineering Innovation and Research, Vol. 3(3), Mar. 2019. 69-77. DOI: 10.12962/j25481479.v3i3.4864   DOI
13 Wagner, F, Warth, P, Royan, M, Lindig, A, Muller, N and Stamm, J (2019). Laboruntersuchungen zum Fischabstieg uber ein Wasserwirbelkraftwerk. Wasserwirtschaft, 109, 64-67
14 Zotloeterer, F (2004). Hydroelectric power plant. Patent WO 2004/061295A3,2004
15 Power, C, McNabola, M and Coughlan, P (2016). A parametric experimental investigation of the operating conditions of gravitational vortex hydropower(GVHP). J. of Clean Energy Technologies, vol.4, no.2, pp. 112-119. DOI: 10.7763/JOCET.2016.V4.263   DOI