Browse > Article
http://dx.doi.org/10.17663/JWR.2019.21.3.207

An Experimental Study on Flow Characteristics in the Open Annular Flume  

Choi, In Ho (Department of Civil Engineering, Seoil University)
Kim, Jong Woo (Department of Civil Engineering, Seoil University)
Publication Information
Journal of Wetlands Research / v.21, no.3, 2019 , pp. 207-214 More about this Journal
Abstract
This study investigated the flow characteristics in an annular flume with a free water surface using the Acoustic Doppler Velocimeter(ADV) in the laboratory. The flow was driven by the rotation of the inner cylinder in a way designed not to interfere with flocculation of cohesive sediments. The effect of the inner cylinder for the longitudinal velocities showed highest near the moving boundary and decreased towards the outer wall. At the lower longitudinal velocity, there was a peak in turbulent kinetic energy near the bed, whereas it moved upward to with increasing of the velocity. The longitudinal velocities estimated using the power law were in good agreement with the measured values than the values predicted by the log-law with roughness lengths. The average friction velocities evaluated by Reynolds shear stress were smaller than the values calculated using the log-law and power law when increasing the longitudinal velocity.
Keywords
Annular flume; Friction velocity; Cohesive sediments; Reynolds stress;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Van Leussen, W (1994). Estuarine Macroflocs and their Role in Fine-grained Sediment Transport. Ph.D. Thesis, University Utrecht.
2 Von Karman, T (1930). Mechanische Ahnlichkeit und Turbulenz, Nachrichten von der Gesellschaft der Wissenschaften zu Gottingen, Fachgruppe 1(Mathematik), 5, pp. 58-76. [German Literature]
3 Whipple, K (2004). Hydraulic Roughness (PDF). Surface processes and landscape evolution. MIT OCW.
4 Barenblatt, GI, Chorin, AJ and Prostokishin, VM (1997). Scaling laws for fully developed turbulent flow in pipes. Appl. Mech. Rev., 50(7), pp. 413-429. DOI:10.1115/1.3101726   DOI
5 Choi, IH and Kim, JW (2018). Physical characteristics of floc density of suspended fine particles in accordance with the cohesiveness. J. of Wetlands Research. 20(3), pp. 227-234. [Korean Literature] DOI https://doi.org/10.17663/JWR.2018.20.3.227   DOI
6 Booij R (1994). Measurements of the flow field in a rotating annular flume. Communications on Hydraulic and Geotechnical Engineering Report no. 94-2. http://resolver.tudelft.nl/uuid:431193bc-8cfb-46ce-81fd-5034941b0769
7 Choi, IH and Kim, JW (2014). Experimental study on erosional behaviour of fine-grained sediments. J. of Korean Society Hazard Mitigation, 14(3), pp. 863-872. [Korean Literature] http://dx.doi.org/10.9798/KOSHAM.2014.14.3.291
8 Choi, IH and Kim, JW (2017). Study of settling properties of cohesive sediments. J. of Wetlands Research. 19(3), pp. 303-310. [Korean Literature] DOI https://doi.org/10.17663/JWR.2017.19.3.303   DOI
9 Duan, JG (2009). Mean flow and turbulence around a laboratory spur dike. J. of Hydraulic Engineering, 131(12), pp. 1126-1135. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000077   DOI
10 Gharabaghi, B, Inkratas, C, Krishnappan, BG, Rudra, RP (2007). Flow characteristics in a rotating circular flume. The Open Civil Engineering Journal, 1, 30-36.   DOI
11 Mohrig, D (2004). Conservation of Mass and Momentum (PDF). 12.110: Sedimentary Geology, Fall 2004. MIT OCW.
12 Hillebrand, G (2008). Transportverhalten kohaesiver Sedimente in turbulenten Stroemungen-Untersuchungen im offenen Kreisgerinne. Dissertation, IWK, Universitat Karlsruhe. [German Literature]
13 Johansen, C (1998). Dynamics of cohesive sediments. Hydraulic & Coastal Engineering Laboratory Department of Civil Engineering Aalborg University.
14 Krishnappan, BG (1993). Rotating circular flume. J. of Hydraulic Engineering, 119(6), 758-767. DOI: 10.1061/(ASCE)0733-9429(1993)119:6(758)   DOI
15 Krishnappan, BG and Engel, P (2004). Distribution of bed shear stress in rotating circular flume. J. of Hydraulic Engineering, 130(4), 324-331. DOI: 10.1061/(ASCE)0733-9429(2004)130:4(324)   DOI
16 Krishnappan, BG (2004). Erosion behavior of fine sediment deposits. Canadian Journal of Civil Engineering, 31(5), pp. 759-766. DOI: 10.1139/l04-054   DOI
17 Neumeier, U, Lucas, CH and Collins, M (2006). Erodibility and erosion patterns of mudflat sediments investigated using an annular flume. Aquatic Ecology 40 pp.543-554. DOI 10.1007/s 10452-004-0189-8   DOI
18 Parchure, TM and Mehta, AJ (1985). Erosion of Soft Cohesive Sediment Deposits. J. of Hydraulic Engineering, 111(10), pp. 1308-1326. DOI: 10.1061/(ASCE)0733-9429(1985)111:10(1308)   DOI
19 Schlichting, H and Gersten, K (2000). Boundary-Layer Theory. Springer, 8th edition. https://dx.doi.org/10.1007/978-3-642-85829-1
20 Skulovich, O, Ganal, C, Nusser, LK, Cofalla, C, Schuettrumpf, H, Hollert, H, Seiler, TB and Ostfeld, A (2018). Prediction of erosional rates for cohesive sediments in annular flume experiments using artificial neural networks. $H_2Open$ Journal 1 (2): pp. 99-111. https://doi.org/10.2166/h2oj.2018.107
21 Spork, V (1997). Erosionsverhalten feiner Sedimente und ihre biogene Stabilisierung. Band 114 der Reihe Mitteilungen des Lehrstuhls und Instituts fuer Wasserwirtschaft der RWTH Achen. [German Literature]