Browse > Article
http://dx.doi.org/10.17663/JWR.2016.18.3.244

Correlation between operation factors and nitritation using anaerobic digester supernatant at ordinary temperature  

Im, Jiyeol (School of Civil, Environmental and Architectural Engineering, Korea University)
Gil, Kyungik (Department of Civil Engineering, Seoul National University of Science and Technology)
Publication Information
Journal of Wetlands Research / v.18, no.3, 2016 , pp. 244-249 More about this Journal
Abstract
Anaerobic digester supernatant including high concentrations of nitrogen is recycled to water treatment line and make pollutant load increase in municipal wastewater treatment plant(MWTP). To treat nitrogen in anaerobic digester supernatant is suggested the method of MWTP retrofit. In this study, the lab scale reactor was operated about 200 days using supernatant of anaerobic digester. The results could draw operation condition that ammonium nitrogen removal efficiency more than 90% and nitrite conversion efficiency over 70%. Correlation between operation efficiency and operation factors was analyzed based on the operation results. Ammonium nitrogen remove efficiency and nitrite conversion efficiency were related to solid retention time (SRT), ammonium nitrogen load and ammonium nitrogen loading per unit mixed liquer suspended solid (MLSS). Results of this study can be used effective data on nitritation of supernatant of anaerobic digester, and be expected to increase availability of nitritation.
Keywords
Anaerobic digester supernatant; Nitrogen; Eutrophication; water system; Eco-friendly;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 APHA, AWWA and WEF (1998). Standard method for examination of water and wastewater. 20th edition, Washington DC, US.
2 Gali, A, Dosta, J, Lopez-palau, S and Mata-alvarez, J (2008) SBR technology for high ammonium loading rates. Wat. Sci. & Tech., 58(2), pp. 467-472.   DOI
3 Gil, K, Choi, E, Yun, Z, Lee, J, Ha, J and Park, J (2002) The nomographic design approach to recycled water treatment by the nitritation process, Wat. Sci. & Tech., 46(11-12), pp. 85-92.
4 Gil, K and Choi, E (2004) Nitrogen removal by recycle water nitritation as an attractive alternative for retrofit technologies in MWTPs, Wat. Sci. & Tech., 49(5-6), pp. 39-46.
5 Im, J and Gil, K (2011a) Evaluation of Nitritation of High Strength Ammonia with Variation of SRT and Temperature using Piggery Wastewater, J. of Korean society on water environment, 27(5), pp. 563-571. [Korean Literature]
6 Im, J, Jung, J, Bae, H, Kim, D and Gil K (2014). Correlation between Nitrite Accumulation and Concentration of AOB in a Nitritation reactor. Environ Earth Sci, 72, pp. 289-297.   DOI
7 Kang, S, K, Jong, S, P, Hyeon, S, H, Kyoung, H, R (2012) Characteristics of Non-point Source Runoff in Housing and Industrial Area during Rainfall. Korean Wetlands Society, 14(4), pp. 581-589. [Korean Literature]
8 Kim, LH, Lee, S (2005). Characteristics of Metal Pollutants and Dynamic EMCs in a Parking Lot and a Bridge during Storms. J. of Korean society on water environment, 21(3). pp. 248-255. [Korean Literature]
9 Lee, EJ, Son, H, Kang, HM, Kim, LH (2007). Characteristics of Non-point Pollutant from Highway Toll Gate Landuse. J. of Korean Society of Road Engineers, pp. 185-192. [Korean Literature]
10 Li, H B, Cao, H B, Li, Y P, Zhang, Y and Liu, H R (2010). Effect of Organic Compounds on Nitrite Accumulation during the Nitrification Process for Coking Wastewater. Wat Sci Tech, 62(9), pp. 2096-2105.   DOI
11 van de Graaf, A A, de Bruijn, P, Robertson, L A, Kuenen, J G and Mulder, A (1991). Biological oxidation of ammonium under anoxic conditions : ANAMMOX process. Intern. Symp. Environ. Biotechnol. 2. pp. 667-669.
12 van Kempen. R, ten Have, C C R, Meijer. S C F, Mulder. J W and Duin. J O J (2001). SHARON process evaluated for improved wastewater treatment plant nitrogen effluent quality. Wat Sci Tech, 52(4), pp. 55-62.
13 van Dongen, U, Jetten, M C M and van Loosdrecht, M C M (2001). The SHARON-ANAMMOX process for the treatment of ammonium rich wastewater. Wat Sci Tech, 44(1), 153-160.
14 van Loosdrecht, M C M. and Jetten, M C M. (1998). Microbiological conversions in nitrogen removal. Wat Sci Tech, 38, pp. 1-7.
15 Yang, Q, Liu, X H, Peng, Y Z, Wang, S Y, Sun, H W and Gu, S B (2009). Advanced Nitrogen Removal via Nitrite from Municipal Wastewater in a Pilot-plant Sequencing Batch Reactor. Wat Sci Tech, 59(12), pp. 2371-2377.   DOI