Browse > Article
http://dx.doi.org/10.17663/JWR.2015.17.4.407

Effects of Gold Nanoparticles on eggs and tadpoles of Rana dybowskii  

Kim, Eun Ji (Department of Animal Resource, Sahmyook University)
Ko, Weon Bae (Department of Convergence Science, Sahmyook University)
Han, Eul (Department of Animal Resource, Sahmyook University)
Kim, Ho Jin (Department of Convergence Science, Sahmyook University)
Ko, Jeong Won (Department of Convergence Science, Sahmyook University)
Chung, Hoon (Department of Animal Resource, Sahmyook University)
Publication Information
Journal of Wetlands Research / v.17, no.4, 2015 , pp. 407-413 More about this Journal
Abstract
As the number of applications containing nanomaterials increase, aquatic ecosystem exposure to nanoparticles (NPs) is unavoidable. In this study, we carried out toxicity assessment to Au-nanoparticles(NPs) of Rana dybowskii eggs and tadpoles. Toxicity was recorded hatching rate, body condition(Snout-tail length, STL), and behavioral sensitivity. Behavioral sensitivity was analyzed to anti-predator behavior using Ethovision XT 9. Au-NPs did not show any toxicity of hatching rate and STL. But, Tadpoles exposed to Au-NPs decrease behavioral sensitivity of stimuli. This study has value of environmental toxicity evaluation because these results show the new way of toxicity assessment.
Keywords
behavior toxicity assessment; gold; nanoparticles; Rana dybowskii; tadpole;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Harper, S, Usenko, C, Hutchison, JE, Maddux, BLS and Tanguay, RL (2008). In vivo biodistribution and toxicity depends on nanomaterial composition, size, surface functionalisation and route of exposure. J. of Experimental Nanoscience, 3(3), pp, 195-206.   DOI
2 Harper, SL, Carriere, JL, Miller, JM, Hutchison, JE, Maddux, BL and Tanguay, RL (2011). Systematic evaluation of nanomaterial toxicity: utility of standardized materials and rapid assays. ACS nano, 5(6), pp, 4688-4697.   DOI
3 Heinlaan, M, Ivask, A, Blinova, I, Dubourguier, HC and Kahru, A (2008). Toxicity of nanosized and bulk ZnO, CuO and TiO 2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere, 71(7), pp, 1308-1316.   DOI
4 Hu, CW, Li, M, Cui, YB, Li, DS, Chen J and Yang, LY (2010). Toxicological effects of TiO 2 and ZnO nanoparticles in soil on earthworm Eisenia fetida. Soil Biology and Biochemistry, 42(4), pp, 586-591.   DOI
5 Huang, X, Neretina S and El-Sayed, MA. (2009) Gold nanorods: from synthesis and properties to biological and biomedical applications. Advanced Materials, 21(48), pp, 1-31.
6 Hussain, SM, Hess, KL, Gearhart, JM, Geiss, KT and Schlager, JJ. (2005). In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicology in vitro, 19(7), pp, 975-983.   DOI
7 Jani, PU, McCarthy, DE and Florence, AT (1994). Titanium dioxide (rutile) particle uptake from the rat GI tract and translocation to systemic organs after oral administration. International J. of pharmaceutics, 105(2), pp, 157-168.   DOI
8 Kim, EJ, Park, YS, Kim, DB, Jeon, MA and Chung, H (2011). The study of Predator to Korean Salamander. J. of Natural Science, 15(1), pp, 23-26. [Korean Literature]
9 Kisin, ER, Murray, AR, Keane, MJ, Shi, XC, Schwegler-Berry, D, Gorelik, O, Arepalli, S, Castranava, V, Wallace, WE, Kagan, VE and Shvedova, AA (2007). Single-walled carbon nanotubes: geno-and cytotoxic effects in lung fibroblast V79 cells. J. of Toxicology and Environmental Health, Part A, 70(24), pp, 2071-2079.   DOI
10 Lee, BT and Ranville, JF (2012). The effect of hardness on the stability of citrate-stabilized gold nanoparticles and their uptake by Daphnia magna. J. of hazardous materials, 213-214, pp, 434-439.   DOI
11 Lee, WM and An, YM (2010). Review Paper: Research Trends of Ecotoxicity of Nanoparticles in Water Environment. J. of Korean Society on Water Environment, 28(3), pp, 313-319. [Korean Literature]
12 Li, T, Albee, B, Alemayehu, M, Diaz, R, Ingham, L, Kamal, S, Rodriguez. M and Bishnoi, SW (2010). Comparative toxicity study of Ag, Au, and Ag-Au bimetallic nanoparticles on Daphnia magna. Analytical and bioanalytical chemistry, 398(2), pp, 689-700.   DOI
13 Long, TC, Saleh, N, Tilton, RD, Lowry, GV and Veronesi, B (2006). Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): implications for nanoparticle neurotoxicity. Environmental Science & Technology, 40(14), pp, 4346-4352.   DOI
14 Lovern, SB, Owen, HA, and Klaper, R (2008). Electron microscopy of gold nanoparticle intake in the gut of Daphnia magna. Nanotoxicology, 2(1), pp, 43-48.   DOI
15 Mathis, A, Ferrari, MC, Windel, N, Messier, F and Chivers, DP (2008). Learning by embryos and the ghost of predation future. Proceedings of the Royal Society of London B: Biological Sciences, 275(1651), pp, 2603-2607.   DOI
16 Perreault, F, Bogdan, N, Morin, M, Claverie, J and Popovic, R (2012). Interaction of gold nanoglycodendrimers with algal cells (Chlamydomonas reinhardtii) and their effect on physiological processes. Nanotoxicology, 6(2), pp, 109-120.   DOI
17 Meyer, JN, Lord, CA, Yang, XY, Turner, EA, Badireddy, AR, Marinakos, SM, Chilkoti, A, Wiesner, MR and Auffan, M (2010). Intracellular uptake and associated toxicity of silver nanoparticles in Caenorhabditis elegans. Aquatic toxicology, 100(2), pp, 140-150.   DOI
18 Oberdorster, E (2004). Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environmental health perspectives, 112(10), pp, 1058-1062   DOI
19 OECD (2010).Series on the Safety of Manufactured Nanomaterials No. 27:List of Manufactured Nanomaterials and List of Endpoints for Phase One of the Sponsorship Programme for the Testing of Manufactured Nanomaterials: Revision.
20 Perreault, F, Melegari, SP, Fuzinatto, CF, Bogdan, N, Morin, M, Popovic, R and Matias, WG (2014). Toxicity of pamamcoated gold nanoparticles in different unicellular models. Environmental toxicology, 29(3), pp, 328-336.   DOI
21 Renault, S, Baudrimont, M, Mesmer-Dudons, N, Gonzalez, P, Mornet, S and Brisson, A (2008). Impacts of gold nanoparticle exposure on two freshwater species: a phytoplanktonic alga (Scenedesmus subspicatus) and a benthic bivalve (Corbicula fluminea). Gold bulletin, 41(2), pp 116-126.   DOI
22 Rodea-Palomares, I, Boltes, K, Fernandez-Pinas, F, Leganes, F, Garcia-Calvo, E, Santiago, J and Rosal, R (2011). Physicochemical characterization and ecotoxicological assessment of CeO2 nanoparticles using two aquatic microorganisms. Toxicological Sciences, 119(1), pp, 135-145.   DOI
23 Tedesco, S, Doyle, H, Redmond, G and Sheehan, D (2008). Gold nanoparticles and oxidative stress in Mytilus edulis. Marine environmental research, 66(1), pp, 131-133.   DOI
24 Scholars, W.W.I.C.F. PEW (2011). Project on Emerging Nanotechenologies, Woodrow Wilson International Center for Scholars, Project on Emerging Nanotechnologies, Washington, DC.
25 Tedesco, S, Doyle, H, Blasco, J, Redmond, G and Sheehan, D (2010a). Exposure of the blue mussel, Mytilus edulis, to gold nanoparticles and the pro-oxidant menadione. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 151(2), pp, 167-174.   DOI
26 Tedesco, S, Doyle, H, Blasco, J, Redmond, G and Sheehan, D (2010b). Oxidative stress and toxicity of gold nanoparticles in Mytilus edulis. Aquatic Toxicology, 100(2), pp, 178-186.   DOI
27 Truong, L, Saili, KS, Miller, JM, Hutchison, JE and Tanguay, RL (2012a). Persistent adult zebrafish behavioral deficits results from acute embryonic exposure to gold nanoparticles. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 155(2), pp, 269-274.   DOI
28 Truong, L, Zaikova, T, Richman, EK, Hutchison, JE and Tanguay, RL (2012b). Media ionic strength impacts embryonic responses to engineered nanoparticle exposure. Nanotoxicology, 6(7), pp, 691-699.   DOI
29 Van Hoecke, K, De Schamphelaere, KAC, Ali, Z, Zhang, F, Elsaesser, A, Rivera-Gil, P, Parak, WJ, Smagghe, G, Howard, CV and Janssen, CR. (2013). Ecotoxicity and uptake of polymer coated gold nanoparticles. Nanotoxicology, 7(1), pp, 37-47.   DOI
30 Yang, SY, Kim, JB, Min, MS, Suh, JH and Kang YJ(2001). Monograph of Korean Amphibia. Academi Publisher, Seoul, Korea.
31 Bermudez, E, Mangum, JB, Wong, BA, Asgharian, B, Hext, PM, Warheit, DB and Everitt, JI (2004). Pulmonary responses of mice, rats, and hamsters to subchronic inhalation of ultrafine titanium dioxide particles. Toxicological sciences, 77(2), pp, 347-357.   DOI
32 Asharani, PV, Lianwu, YI, Gong, Z and Valiyaveettil, S (2011). Comparison of the toxicity of silver, gold and platinum nanoparticles in developing zebrafish embryos. Nanotoxicology, 5(1), pp, 43-54.   DOI
33 Bakri, SJ, Pulido, JS, Mukherjee, P, Marler, RJ and Mukhopadhyay, D (2008). Absence of histologic retinal toxicity of intravitreal nanogold in a rabbit model. Retina, 28, pp, 147-149.   DOI
34 Bar-Ilan, O, Albrecht, RM, Fako, VE and Furgeson, DY (2009). Toxicity assessments of multisized gold and silver nanoparticles in zebrafish embryos. Small, 5(16), pp 1897-1910.   DOI
35 Boxall, AB, Chaudhry, Q, Sinclair, C, Jones, A, Aitken, R, Jefferson, B and Watts, C (2007). Current and future predicted environmental exposure to engineered nanoparticles. Central Science Laboratory, Department of the Environment and Rural Affairs, London, UK.
36 Browning, LM, Lee, KJ, Huang, T, Nallathamby, PD, Lowman, JE and Xu, XHN (2009). Random walk of single gold nanoparticles in zebrafish embryos leading to stochastic toxic effects on embryonic developments. Nanoscale, 1(1), pp, 138-152.   DOI
37 Chivers, DP and Mirza, RS (2001). Importance of predator diet cues in responses of larval wood frogs to fish and invertebrate predators. J. of chemical ecology, 27(1), pp, 45-51.   DOI
38 Farkas, J, Christian, P, Urrea, JAG, Roos, N, Hassellov, M, Tollefsen, KE and Thomas, KV (2010). Effects of silver and gold nanoparticles on rainbow trout (Oncorhynchus mykiss) hepatocytes. Aquatic Toxicology, 96(1), pp, 44-52.   DOI
39 Zhu, ZJ, Carboni, R, Quercio, MJ, Yan, B, Miranda, OR, Anderton, DL, Arcaro, KF, Rotello, VM and Vachet, RW (2010). Surface properties dictate uptake, distribution, excretion, and toxicity of nanoparticles in fish. Small, 6(20), pp, 2261-2265.   DOI
40 Fabrega, J, Luoma, SN, Tyler, CR, Galloway, TS and Lead, JR. (2011). Silver nanoparticles: behaviour and effects in the aquatic environment. Environment international, 37(2), pp, 517-531.   DOI
41 Ferrari, MC, Messier, F and Chivers, DP (2007a). Degradation of chemical alarm cues under natural conditions: risk assessment by larval woodfrogs. Chemoecology, 17(4), pp, 263-266.   DOI
42 Ferrari, MC, Messier, F and Chivers, DP (2007b). First documentation of cultural transmission of predator recognition by larval amphibians. Ethology, 113(6), pp, 621-627.   DOI
43 Ferrari, MC, Messier, F and Chivers, DP (2008). Larval amphibians learn to match antipredator response intensity to temporal patterns of risk. Behavioral Ecology, 19(5), pp, 980-983.   DOI
44 Geffroy, B, Ladhar, C, Cambier, S, Treguer-Delapierre, M, Brethes, D and Bourdineaud, JP (2012). Impact of dietary gold nanoparticles in zebrafish at very low contamination pressure: the role of size, concentration and exposure time. Nanotoxicology, 6(2), pp, 144-160.   DOI
45 George, S, Xia, T, Rallo, R, Zhao, Y, Ji, Z, Lin, S, Wang, X, Zhang, H, France, B, Schoenfeld, D, Damoiseaux, R, Liu, R, Lin, S, Bradley, K, Cohen, Y and Nel, AE (2011). Use of a high-throughput screening approach coupled with in vivo zebrafish embryo screening to develop hazard ranking for engineered nanomaterials. ACS nano, 5(3), pp, 1805-1817.   DOI