Browse > Article
http://dx.doi.org/10.20465/KIOTS.2022.8.1.053

Smoothing Algorithm Considering Server Bandwidth and Network Traffic in IoT Environments  

Lee, MyounJae (Division of Computer Engineering, BaekSeok University)
Publication Information
Journal of Internet of Things and Convergence / v.8, no.1, 2022 , pp. 53-58 More about this Journal
Abstract
Smoothing is a transmission plan that converts video data stored at a variable bit rate into a constant bit rate. In the study of [6-7], when a data rate increase is required, the frame with the smallest increase is set as the start frame of the next transmission rate section, when a data tate decrease is required. the frame with the largest decrease is set as the start frame of the next transmission rate section, And the smoothing algorithm was proposed and performance was evaluated in an environment where network traffic is not considered. In this paper, the smoothing algorithm of [6-7] evaluates the adaptive CBA algorithm and performance with minimum frame rate, average frame rate, and frame rate variation from 512KB to 32MB with E.T 90 video data in an environment that considers network traffic. As a result of comparison, the smoothing algorithm of [6-7] showed superiority in the comparison of the minimum refresh rate.
Keywords
IoT; Smoothing; VBR; Adaptive Video Transmission; Burst;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 D. Le Gall, "MPEG: A video compression standard for multimedia applications", Communications of the ACM, Vol.34, April, pp.47-58, 1991.   DOI
2 W.Feng, "Rate-constrained bandwidth smoothing for the delivery of stored video", in SPIE Multimedia Networking and Computing, Vol.3020, pp.316-327, 1997.
3 Ray-I chang,Meng-Chang Chen,Jan-Ming Ho and Ming-Tat Ko, "Schedulable Region for VBR Media Transmission with Optimal Resource Allocation and Utilization", infsci(1~2), pp.1-79, 2002.
4 W.Feng, F.Jahanian, S.Sechrest, "An Optimal Bandwidth Allocation Strategy for the Delivery of Compressed Prerecoded Video", ACM/Springer-Verlag Multimedia Systems, Vol. 5, No. 5, pp.297-309, Sept 1997.   DOI
5 M.J.Lee, et,al, "An Efficient Smoothing Algorithm for Video Transmission at Variable Bit Rate", KIPS Transactions on Computer and Communication Systems, Vol.11, No.7, pp.1009-1022, 2004.
6 M.J.Lee, "Video Data Transfer Algorithms for Efficient Use of Network Bandwidth", Journal of Next-generation Convergence Information Services Technology, Vol.10, No.1, pp.11-20, 2021.   DOI
7 M.J.Lee, "Performance Evaluation of Smoothing Algorithm for Efficient Use of Network Resources in IoT environments", Journal of The Korea Internet of Things Society, 7(2), pp.47-53, 2021.   DOI
8 W. Feng, S. Sechrest, "Critical Bandwidth Allocation for the Delivery of Compressed Prerecorded Video", Computer Communications, Vol18, No.10, pp.709-717, 1995.   DOI
9 J. Zhang and J. Hui. "Applying traffic smoothing techniques for quality of service control in VBR video transmissions", Computer Communications, pp.375-389, 1998.
10 J. Zhang and J. Y. Hui, "Traffic Characteristics and Smoothness Criteria in VBR Video Traffic Smoothing", in Proc. of the ICMC and Systems, Vol.1, pp.3-11. 1997.
11 P. Thiran, et. al., "Network calculus applied to optimal multimedia smoothing", Proceedings IEEE INFOCOM 2001, pp.1474-1483, 2001.
12 W. Feng, et. al., "Smoothing and buffering for delivery of prerecorded compressed video", in Proc. of ISET/SPIE Symp. on Multimedia Comp. and Networking, pp.234-242, 1995.
13 Wu-chi Feng, Ming Liu, "Extending critical bandwidwith allocation Techniques for stored video delivery across best-effort networks", International Journal of COMMUNICATION SYSTMES Int.J.Commun.sust ,2001.
14 Han-Chieh Chao, C.L.Hung, "Efficient Changes and Variability Bandwidth Allocation for VBR Media Streams", IEEE International Conference on Communications. Conference Proceedings, Vol.12, pp. 179-185, 2001.
15 W. Feng and J. Rexford. "Performance evaluation of smoothing algorithms for transmitting prerecorded VBR video", IEEE Trans. on Multimedia, pp.302-312, 1999.   DOI
16 Wu-chi Feng, Ming Liu, "Critical Bandwidth Allocation Technique for Stored Video Delivery Across Best-Effort Network", pp.25, (OSU- CISRC-8/98-TR32) 1998.
17 J. McManus and K.Ross, "Video on demand over ATM:Constant-rate Transmission and Transport", in proc.of ACM SIGMETRICS, pp.222-231, May 1996.
18 J.D. Salehi, et. al., "Supporting stored video: Reducing rate variability and end-to-end resource requirements through optimal smoothing", in Proc. of ACM SIGMETRICS, pp.222-231, 1996.