Browse > Article
http://dx.doi.org/10.7473/EC.2021.56.3.113

Facile Fabrication of Carbon Nanotubes@CuO Composites by Microwave Method  

Kim, Tae Hyeong (Department of Applied Chemistry, Hanyang University)
Cha, Dun Chan (Department of Applied Chemistry, Hanyang University)
Jeong, Jung-Chae (Industrial Policy Planning Department)
Lee, Seunghyun (Department of Applied Chemistry, Hanyang University)
Publication Information
Elastomers and Composites / v.56, no.3, 2021 , pp. 113-116 More about this Journal
Abstract
In this study, we report a facile fabrication of multi-walled carbon nanotubes (MWCNTs)-CuO composites synthesized by a microwave method using MWCNTs and copper oxide (CuO). The number of copper hydrate precursors affect the size and number of CuO domains formed along the MWCNTs in the composites. The domain size is controllable from 239 nm to 348 nm. The composites are characterized by transmission electron microscopy, energy dispersive spectrometry, X-ray diffraction (XRD), Raman spectroscopy, and UV-Vis spectroscopy. The CuO produced in the composites is confirmed to be tenorite with a monoclinic crystal structure through the XRD patterns of (-111), (111) and (-202).
Keywords
multi-walled carbon nanotubes; copper oxide; MWCNTs@CuO composites; microwave method;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. Y. Kim, M. J. Kim, G. Sung, and J. Y. Sun, "Stretchable and reflective displays: materials, technologies and strategies", Nano Convergence, 6, 1 (2019).   DOI
2 F. Wang, S. Arai, and M. Endo, "Metallization of multiwalled carbon nanotubes with copper by an electroless deposition process", Electrochem. Commun., 6, 1042 (2004).   DOI
3 S. ullah Rather, "Hydrogen uptake of cobalt and copper oxide-multiwalled carbon nanotube composites", Int. J. Hydrogen Energy, 42, 11553 (2017).   DOI
4 K. A. Wepasnick, B. A. Smith, K. E. Schrote, H. K. Wilson, S. R. Diegelmann, and D. H. Fairbrother, "Surface and structural characterization of multi-walled carbon nanotubes following different oxidative treatments", Carbon, 49, 24 (2011).   DOI
5 J. F. Xu, W. Ji, Z. X. Shen, and S. H. Tang, "Preparation and Characterization of CuO Nanocrystals", J. Solid State Chem., 147, 516 (1999).   DOI
6 K. Zhang, J. M. Suh, T. H. Lee, J. H. Cha, J. W. Choi, H. W. Jang, R. S. Varma, and M. Shokouhimehr, "Copper oxidegraphene oxide nanocomposite: efficient catalyst for hydrogenation of nitroaromatics in water", Nano Convergence, 6, 1 (2019).   DOI
7 M. Tomonari, K. Ida, H. Yamashita, and T. Yonezawa, "Size-Controlled Oxidation-Resistant Copper Fine Particles Covered by Biopolymer Nanoskin", J. Nanosci. Nanotechnol., 8, 2468 (2008).   DOI
8 N. Cioffi, L. Torsi, N. Ditaranto, G. Tantillo, L. Ghibelli, L. Sabbatini, T. Bleve-Zacheo, M. D'Alessio, P. G. Zambonin, and E. Traversa, "Copper Nanoparticle/Polymer Composites with Antifungal and Bacteriostatic Properties", Chem. Mater., 17, 5255 (2005).   DOI
9 M. Endo, M. S. Strano, and P. M. Ajayan, "Potential applications of carbon nanotubes", Carbon Nanotubes, 111, 13 (2007).   DOI
10 R. Mohan, A. M. Shanmugharaj, and R. S. Hun, "An efficient growth of silver and copper nanoparticles on multiwalled carbon nanotube with enhanced antimicrobial activity", J. Biomed. Mater. Res., 96B, 119 (2011).   DOI
11 M. Gopiraman, S. G. Babu, Z. Khatri, W. Kai, Y. A. Kim, M. Endo, R. Karvembu, and I. S. Kim, "An efficient, reusable copper-oxide/carbon-nanotube catalyst for N-arylation of imidazole", Carbon, 62, 135 (2013).   DOI
12 V. B. Nam, T. T. Giang, S. Koo, J. Rho, and D. Lee, "Laser digital patterning of conductive electrodes using metal oxide nanomaterials", Nano Convergence, 7, 1 (2020).   DOI