Browse > Article
http://dx.doi.org/10.7473/EC.2021.56.2.57

A Review on Recent Development and Applications of Dielectric Elastomers  

Seo, Jin Sung (Department of Chemistry and Chemical Engineering, Inha University)
Kim, Dohyeon (Department of Chemistry and Chemical Engineering, Inha University)
Hwang, Sosan (Department of Chemistry and Chemical Engineering, Inha University)
Shim, Sang Eun (Department of Chemistry and Chemical Engineering, Inha University)
Publication Information
Elastomers and Composites / v.56, no.2, 2021 , pp. 57-64 More about this Journal
Abstract
This paper reviews recent developments and applications of dielectric elastomers (DEs) and suggests various techniques to improve DE properties. DEs as smart materials are a variety of electro-active polymers (EAPs) that convert electrical energy into mechanical energy and cause a large deformation when a voltage is applied. The dielectric constant, modulus, and dielectric loss of DEs determine the efficiency of deformation. Among these, the dielectric constant significantly affects their performance. Therefore, various recent approaches to improve the dielectric constant are reviewed, including the enhancement of polarization, introduction of microporous structures in the matrix, and introduction of ferroelectric fillers. Furthermore, the basic principles of DEs are examined, as well as their various applications such as actuators, generators, sensors, and artificial muscles.
Keywords
electro-active polymer; dielectric elastomer; actuator; dielectric constant fillers;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Sun, X. Liu, B. Yu, Z. Feng, N. Ning, G. H. Hu, M. Tian, and L. Zhang, "Simultaneously Improved Dielectric and Mechanical Properties of Silicone Elastomer by Designing a Dual Crosslinking Network", Polym. Chem., 10, 633 (2019).   DOI
2 R. Manna and S. K. Srivastava, "Fabrication of Functionalized Graphene Filled Carboxylated Nitrile Rubber Nanocomposites as Flexible Dielectric Materials", Mater. Chem. Front., 1, 780 (2017).   DOI
3 T. Chen, J. Qiu, K. Zhu, and J. Li, "Electro-Mechanical Performance of Polyurethane Dielectric Elastomer Flexible Micro-Actuator Composite Modified with Titanium DioxideGraphene Hybrid Fillers", Mater. Des., 90, 1069 (2016).   DOI
4 S. Liu, M. Tian, B. Yan, L. Zhang, T. Nishi, and N. Ning, "High Performance Dielectric Elastomers by Partially Reduced Graphene Oxide and Disruption of Hydrogen Bonding of Polyurethanes", Polymer, 56, 375 (2015).   DOI
5 X. Zhang, Y. Ma, C. Zhao, and W. Yang, "High Dielectric Constant and Low Dielectric Loss Hybrid Nanocomposites Fabricated with Ferroelectric Polymer Matrix and BaTiO3 Nanofibers Modified with Perfluoroalkylsilane", Appl. Surf. Sci., 305, 531 (2014).   DOI
6 S. Zhu, J. Guo, and J. Zhang, "Enhancement of Mechanical Strength Associated with Interfacial Tension Between Barium Titanate and Acrylonitrile-Butadiene Rubber with Different Acrylonitrile Contents by Surface Modification", J. Appl. Polym. Sci., 135, 45936 (2018).   DOI
7 J. K. Yuan, W. L. Li, S. H. Yao, Y. Q. Lin, A. Sylvestre, and J. Bai, "High Dielectric Permittivity and Low Percolation Threshold in Polymer Composites Based on SiC-Carbon Nanotubes Micro/Nano Hybrid", Appl. Phys. Lett., 98, 032901 (2011).   DOI
8 L. L. Sun, B. Li, Y. Zhao, G. Mitchell, and W. H. Zhong, "Structure-induced high dielectric constant and low loss of CNF/PVDF composites with heterogeneous CNF distribution", Nanotechnology, 21, 305702 (2010).   DOI
9 Prateek, R. Bhunia, S. Siddiqui, A. Grag, and R. K. Gupta, "Significantly Enhanced Energy Density by Tailoring the Interface in Hierarchically Structured TiO2-BaTiO3-TiO2 Nanofillers in PVDF-Based Thin-Film Polymer Nanocomposites", ACS. Appl. Mater. Interfaces, 11, 14329 (2019).   DOI
10 R. Pelrine, R. Kornbluh, Q. Pei, S. Stanford, S. Oh, and J. Eckerle, "Dielectric Elastomer Artificial Muscle Actuators: Toward Biomimetic Motion", Proceedings of SPIE, 4695, 126 (2002).
11 M. Y. Jung, N. H. Chuc, J. W. Kim, I. M. Koo, K. M. Jung, Y. K. Lee, J. D. Nam, H. R. Choi, and J. C. Koo, "Fabrication and Characterization of Linear Motion Dielectric Elastomer Actuators", Proc. of SPIE, 6168, 616824-1 (2006).
12 Q. Pei, M. Rosenthal, S. Stanford, H. Prahlad, and R. Pelrine, "Multiple-Degrees-of-Freedom Electroelastomer Roll Actuators", Smart. Mater. Struct., 13, N86 (2004).   DOI
13 S. Shian, R. M. Diebold, and D. R. Clarke, "Tunable Lenses Using Transparent Dielectric Elastomer Actuators", Opt. Express, 21, 8669 (2013).   DOI
14 R. D. Kornbluh, R. Pelrine, H. Prahlad, A. W. Foy, B. Mccoy, S. Kim, J. Eckerle, and T. Low, "Dielectric Elastomers: Stretching the Capabilities of Energy Harvesting", MRS. Bull., 37, 246 (2012).   DOI
15 Y. B. Cohen, K. J. Kim, H. R. Choi, and J. D. W. Madden, "Electroactive Polymer Materials", Smart. Mater. Struct., 16, (2007).
16 W. Kaal, and S. Herold, "Electroactive Polymer Actuators in Dynamic Applications". IEEE. ASME. Trans. Mechatron., 16, 24 (2011).   DOI
17 F. Carpi, C. Salaris, and D. D. Rossi, "Folded Dielectric Elastomer Actuators", Smart. Mater. Struct., 16, S300 (2007).   DOI
18 B. Kussmaul, S. Risse, G. Kofod, R. Wache, M. Wegener, D. N. Mccarthy, H. Kruger, and R. Gerhard, "Enhancement of Dielectric Permittivity and Electromechanical Response in Silicone Elastomers: Molecular Grafting of Organic Dipoles to the Macromolecular Network", Adv. Funct. Mater., 21, 4589 (2011).   DOI
19 M. P. Sarmad, E. Chehrazi, M. Noroozi, M. Raef, M. R. Kashani, and M. A. H. Baian, "Tuning the Surface Chemistry of Graphene Oxide for Enhanced Dielectric and Actuated Performance of Silicone Rubber Composites", ACS. Appl. Electron. Mater., 1, 198 (2019).   DOI
20 X. Hao, "A Review on the Dielectric Materials for High Energy-Storage Application", J. Adv. Dielectr., 3, 1330001 (2013).   DOI
21 U. Gupta, L. Qin, Y. Wang, H. Godaba, and J. Zhu, "Soft Robots Based on Dielectric Elastomer Actuators: A Review", Smart. Master. Struct., 28 (2019).
22 L. Xiong, S. Zheng, Z. Xu, Z. Liu, W. Yang, and M. Yang, "Enhanced Performance of Porous Silicone-Based Dielectric Elastomeric Composites by Low Filler Content of Ag@SiO2 Core-Shell Nanoparticles", Nanocomposites, 5, 238 (2019).
23 H. Shigemune, S. Sugano, J. Nishitani, M. Yamauchi, N. Hosoya, S. Hashimoto, and S. Maeda, "Dielectric Elastomer Actuators with Carbon Nanotube Electrodes Painted with a Soft Brush", Acuators., 51, 7 (2018).
24 M. R. Kashani, S. Javadi, and N. Gharavi, "Dielectric Properties of Silicone Rubber-Titanium Dioxide Composites Prepared by Dielectrophoretic Assembly of Filler Particles", Smart. Mater. Struct., 19, 035019 (2010).   DOI
25 R. D. Kornbluh, R. Pelrine, H. Prahlad, A. W. Foy, B. Mccoy, S. Kim, J. Eckerle, and T. Low, "From Boots to Buoys: Promises and Challenges of Dielectric Elastomer Energy Harvesting", Proc. of. SPIE, 7976, 67 (2012).
26 A. O'Halloran, F. O'Malley, and P. McHugh, "A Review on Dielectric Elastomer Actuators, Technology, Applications, and Challenges", J. Appl. Phys., 104, 071101 (2008).   DOI
27 L. Chang, Y. Liu, Q. Yang, L. Yu, J. Liu, Z. Zhu, P. Lu, Y. Wu, and Y. Hu, "Ionic Electroactive Polymers Used in Bionic Robots: A Review", J. Bionic. Eng., 15, 765 (2018).   DOI
28 J. Biggs, K. Danielmeier, J. Hitzbleck, J. Krause, T. Kridl, S. Nowak, E. Orselli, X. Quan, D. Schapeler, W. Sutherland, and J. Wagner, "Electroactive Polymers: Developments of and Perspectives for Dielectric Elastomers", Angew. Chem. Int. Ed., 52, 9409 (2013).   DOI
29 L. J. Romasanta, M. A. L. Manchado, and R. Verdejo, "Increasing the Performance of Dielectric Elastomer Actuators: A Review from the Materials Perspective", Prog. Polym. Sci., 51, 188 (2015).   DOI
30 Y. Zhao, L. J. Yin, S. L. Zhong, J. W. Zha, and Z. M. Dang, "Review of Dielectric Elastomers for Actuators, Generators and Sensors", IET. Nanodielectr., 3, 99 (2020).   DOI
31 F. Carpi, S. Bauer, and D. D. Rossi, "Stretching Dielectric Elastomer Performance", Science, 330, 1759 (2010).   DOI
32 M. W. M. Tan, G. Thangavel, and P. S. Lee, "Enhancing Dynamic Actuation Performance of Dielectric Elastomer Actuators by Tuning Viscoelastic Effects with Polar Cross-linking", NPG. Asia. Mater., 11, 62 (2019).   DOI
33 S. Jiang, L. Jin, H. Hou, and L. Zhang, "Polymer-Based Multifunctional Nanocomposites and Their Applications", pp. 201-243, Higher Education Press, 2019.
34 V. O. Sherman, A. K. Tagantesv, and N. Setter, "FerroelectricDielectric Tunable Composites", J. Appl. Phys., 99, 074104 (2006).   DOI
35 L. Liu, Y. Lei, Z. Zhang, J. Liu, S. Lv, and Z. Guo, "Fabrication of PDA@SiO2@rGO/PDMS Dielectric Elastomer Composites with good Electromechanical Properties", React. Funct. Polym., 154, 104656 (2020).   DOI