Browse > Article
http://dx.doi.org/10.7473/EC.2019.54.3.232

Effects of Polymerization Parameters on Absorption Properties of an Itaconic Acid-based Superabsorbent Hydrogel  

Kim, Dong Hyun (Department of Human Convergence Technology Group, Korea Institute of Industrial Technology (KITECH))
Publication Information
Elastomers and Composites / v.54, no.3, 2019 , pp. 232-240 More about this Journal
Abstract
A superabsorbent hydrogel (SAH) can absorb and retain water weighing more than a hundred times of their dry weight because of their three-dimensional hydrophilic structure. To fabricate an SAH, itaconic acid (IA) and vinyl sulfonic acid (VSA) were subjected to radical polymerization in an aqueous solution, wherein IA and VSA were neutralized, and then, a crosslinker and a thermal initiator were added in sequence. The structure of poly(IA-co-VSA) was characterized using attenuated total reflectance Fourier-transform infrared spectroscopy. We also studied the changes in the absorption properties of the SAH composites according to the polymerization temperature, degree of neutralization, type and content of the initiator used, and type and content of the crosslinker used. Thus, we could determine the effects of some synthetic factors on the absorption properties of the SAH.
Keywords
superabsorbent hydrogel; itaconic acid; crosslinker; centrifuge retention capacity; absorbency under load; absorption properties;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Pourjavadi, A., M. Ayyari, and M. S. Amini-Fazl, "Taguchi optimized synthesis of collagen-g-poly (acrylic acid)/kaolin composite superabsorbent hydrogel", European Polymer Journal, 44.4, 1209 (2008).   DOI
2 Willett, Julious L. and Victoria L. Finkenstadt, "Starch-poly (acrylamide-co-2-acrylamido-2-methylpropanesulfonic acid) graft copolymers prepared by reactive extrusion", Journal of Applied Polymer Science, 132.33 (2015).
3 Ben-Hur M., and R. Keren, "Polymer effects on water infiltration and soil aggregation", Soil Science Society of America Journal 61.2, 565 (1997).   DOI
4 E. Doelker, "Swelling behavior of water-soluble cellulose derivatives", Studies in Polymer Science, Vol. 8, Elsevier, 125 (1990).
5 M. Bakass, Mokhlisse, A., and Lallemant, M., "Absorption and desorption of liquid water by a superabsorbent polymer: Effect of polymer in the drying of the soil and the quality of certain plants", Journal of Applied Polymer Science, 83.2, 234 (2002).   DOI
6 Deligkaris, Kosmas, et al. "Hydrogel-based devices for biomedical applications", Sensors and Actuators B: Chemical 147.2, 765 (2010).   DOI
7 Raju, M. Padmanabha, and K. Mohana Raju, "Design and synthesis of superabsorbent polymers", Journal of Applied Polymer Science, 80.14, 2635 (2001).   DOI
8 Tsubakimoto, Tsuneo, Tadao Shimomura, and Yoshio Irie, "Absorbent article", U.S. Patent No. 4,666,983. 19 May (1987).
9 S. G. Choi, and Kerr, W. L. "Water mobility and textural properties of native and hydroxypropylated wheat starch gels", Carbohydrate Polymers, 51.1, 1 (2003).   DOI
10 Weerawarna, S. Ananda, "Method for making biodegradable superabsorbent particles", U.S. Patent No. 8,641,869. 4 Feb. (2014).
11 More, Swapnil M., et al. "Glutaraldehyde-crosslinked poly (vinyl alcohol) hydrogel discs for the controlled release of antidiabetic drug", Journal of Applied Polymer Science, 116.3, 1732 (2010).   DOI
12 Buchholz, Fredric L., and Andrew T. Graham, "Modern superabsorbent polymer technology", John! Wiley & Sons, Inc, 605 Third Ave, New York, NY 10016, USA, 1998, 279 (1998).
13 Buchholz, Fredric L., and Nicholas Peppas, "Superabsorbent polymers: science and technology", American Chemical Society; Symposium Series, 573 (1994).
14 Kopecek, Jindřich, and Jiyuan Yang, "Hydrogels as smart biomaterials", Polymer International 56.9, 1078 (2007).   DOI
15 Hua, Shuibo, and Aiqin Wang, "Synthesis, characterization and swelling behaviors of sodium alginate-g-poly (acrylic acid)/sodium humate superabsorbent", Carbohydrate Polymers 75.1, 79 (2009).   DOI
16 Okuda, Tomoya, et al. "Renewable biobased polymeric materials: facile synthesis of itaconic anhydride-based copolymers with poly (L-lactic acid) grafts", Macromolecules, 45.10, 4166 (2012).   DOI
17 Yoshimura, Toshio, Kaori Matsuo, and Rumiko Fujioka, "Novel biodegradable superabsorbent hydrogels derived from cotton cellulose and succinic anhydride: Synthesis and characterization", Journal of Applied Polymer Science, 99.6, 3251 (2006).   DOI
18 Lanthong, P., R. Nuisin, and S. Kiatkamjornwong, "Graft copolymerization, characterization, and degradation of cassava starch-g-acrylamide/itaconic acid superabsorbents", Carbohydrate Polymers, 66.2, 229 (2006).   DOI
19 Yoshimura, Toshio, et al. "Synthesis and characterization of biodegradable hydrogels based on starch and succinic anhydride", Carbohydrate Polymers, 64.2, 345 (2006).   DOI
20 Satoh, Kotaro, et al. "Precision Synthesis of Bio-Based Acrylic Thermoplastic Elastomer by RAFT Polymerization of Itaconic Acid Derivatives", Macromolecular Rapid Communications, 35.2, 161 (2014).   DOI
21 Yu, Chao, et al. "Metabolic engineering of Escherichia coli for biotechnological production of high-value organic acids and alcohols", Applied Microbiology and Biotechnology, 89.3, 573 (2011).   DOI
22 Willke, Th and K-D. Vorlop, "Biotechnological production of itaconic acid", Applied Microbiology and Biotechnology, 56.3-4, 289 (2001).   DOI
23 Seetapan, Nispa, Jiraporn Wongsawaeng, and Suda Kiatkamjornwong, "Gel strength and swelling of acrylamide-protic acid superabsorbent copolymers", Polymers for Advanced Technologies, 22.12, 1685 (2011).   DOI
24 Lanthong, P., R. Nuisin, and S. Kiatkamjornwong, "Graft copolymerization, characterization, and degradation of cassava starch-g-acrylamide/itaconic acid superabsorbents", Carbohydrate Polymers, 66.2, 229 (2006).   DOI
25 Wen-Fu Lee and Lin-Gi Yang, "Superabsorbent polymeric materials. XII. Effect of montmorillonite on water absorbency for poly (sodium acrylate) and montmorillonite nanocomposite superabsorbents", Journal of Applied Polymer Science, 92.5, 3422 (2004).   DOI
26 Li, An, Aiqin Wang, and Jianmin Chen, "Studies on poly (acrylic acid)/attapulgite superabsorbent composite. I. Synthesis and characterization", Journal of Applied Polymer Science, 92.3, 1596 (2004).   DOI
27 Soliman, Fathelrahman Mohammed, et al. "Preparation of carboxymethyl cellulose-g-poly (acrylic acid-2-acrylamido-2-methylpropane sulfonic acid)/attapulgite superabsorbent composite", American Journal of Polymer Science and Technology, 2.1, 11 (2016).
28 Flory, Paul J. Principles of Polymer Chemistry, Cornell University Press (1953).
29 Xiang, Yuanqing, Zhiqin Peng, and Dajun Chen, "A new polymer/clay nano-composite hydrogel with improved response rate and tensile mechanical properties", European Polymer Journal, 42.9, 2125 (2006).   DOI
30 Zhang, Junping, Hao Chen, and Aiqin Wang, " Study on superabsorbent composite. IV. Effects of organification degree of attapulgite on swelling behaviors of polyacrylamide/organo-attapulgite composites", European Polymer Journal, 42.1, 101 (2006).   DOI
31 Min-Sung Kim and Soo-Duk Seul, "Isothermal drying rate and copolymerization of vinyl acetate/alkyl methacrylates", Polymer Korea, 33.3, 230 (2009).
32 Weian, Zhang, Luo Wei, and Fang Yue'e, "Synthesis and properties of a novel hydrogel nanocomposites", Materials Letters, 59.23, 2876 (2005).   DOI
33 Kuen Yong Lee, et al. "Controlling mechanical and swelling properties of alginate hydrogels independently by cross-linker type and cross-linking density", Macromolecules, 33.11, 4291 (2000).   DOI
34 Hyo-Sook Joo, et al. "The curing performance of UV-curable semi-interpenetrating polymer network structured acrylic pressure-sensitive adhesives", Journal of Adhesion Science and Technology, 21.7, 575 (2007).   DOI