Browse > Article
http://dx.doi.org/10.7473/EC.2015.50.1.062

Preparation and Physical Properties of Poly(lactic acid) Bio-Composites using Surface Modified Microfibriled Celluloses  

Yeo, Jun-Seok (Department of Polymer Science & Engineering, Center for Photofunctional Energy Materials, Dankook University)
Seong, Dong-Wook (Department of Polymer Science & Engineering, Center for Photofunctional Energy Materials, Dankook University)
Hwang, Seok-Ho (Department of Polymer Science & Engineering, Center for Photofunctional Energy Materials, Dankook University)
Publication Information
Elastomers and Composites / v.50, no.1, 2015 , pp. 62-67 More about this Journal
Abstract
The surface modification of microfibriled cellulose (MFC) was carried out through the hydrolysis-condensation reaction using (3-aminopropyl)triethoxysilane (APS) and 3-glycidyloxypropyltriethoxysilane (GPS) and then the modified cellulose was compounded with bio-degradable poly(lactic acid) (PLA). Also, pristine MFC was compounded with PLA as a control groups. The confirmation of surface modification for the pristine MFC was characterized by FT-IR and SEM/EDX. The thermal and mechanical properties of the PLA/MFC composites depended on the content of MFC and the type of silane coupling agents. From the thermal, morphological and mechanical behaviors of the PLA/MFC composites, it was found that GPS-MFC was more successful to improve the interface adhesion between PLA matrix and the surface of MFC than that of APS-MFC.
Keywords
poly(lactic acid); microfibriled cellulose; composites; silane coupling agent; interface adhesion; mechanical properties;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 A. Kljun, T. A. S. Benians, F. Goubet, F. Meulewaeter, H. P. Knox, and R. S. Blackburn, "Comparative analysis of crystallinity changes in cellulose I polymers using ATR-FTIR, X-ray diffraction, and carbohydrate-binding module probes", Biomacromolecules, 12, 4121 (2011).   DOI   ScienceOn
2 J. K. Kang, S. S. Im, Y. M. Lee, and J. R. Haw, "Preparation and Characterization of Polymer Composite Filled with High Content Biomass", Polymer-Korea, 19, 292 (1995).
3 S. Iwamoto, A. Isogai, and T. Iwata, "Structure and Mechanical Properties of Wet-Spun Fibers Made from Natural Cellulose Nanofibers", Biomacromolecules, 12, 831 (2011).   DOI   ScienceOn
4 H. Qi, J. Cai, L. Zhang, and S. Kuga, "Properties of Films Composed of Cellulose Nanowhiskers and a Cellulose Matrix Regenerated from Alkali/Urea Solution", Biomacromolecules, 10, 1597 (2009).   DOI   ScienceOn
5 G. Siqueira, J. Bras, and A. Dufresne, "Cellulosic Bionanocomposites: A Review of Preparation Properties and Application", Polymer, 2, 728 (2010).   DOI
6 T. Zimmermann, E. Pohler, and T. Geiger, "Cellulose Fibrils for Polymer Reinforcement", Adv. Eng. Mater., 6, 754 (2004).   DOI
7 T. Nishino, I. Matsuda, and K. Hirao, "All-Cellulose Composite", Macromolecules, 37, 7683 (2004).   DOI
8 W. Gindl and J. Keckes, "All-Cellulose Nanocomposite", Polymer, 46, 10221 (2005).   DOI   ScienceOn
9 A. P. Mathew, K. Oksman, and M. Sain, "Mechanical Properties of Biodegradable Composites from Poly Lactic Acid (PLA) and Microcrystlline Cellulose (MCC)", J. Appl. Polym. Sci., 97, 2014 (2005).   DOI
10 J. Lunt, "Large-scale production, properties and commercial applications of polylactic acid polymers", Polym. Degrad. Stab., 59, 145 (1998).   DOI
11 R. E. Drumright, P. R. Gruber, and D. E. Henton, "Polylactic Acid Technology", Adv. Mater., 12, 1841 (2000).   DOI
12 R. Mehta, V. Kumar, H. Bhuniam, and S. N. Upadhyay, "Synthesis of Poly(Lactic Acid): A Review", J. Macromol. Sci. Part C: Polym. Rev., 45, 325 (2005).   DOI
13 E. T. H. Vink, K. R. Rabago, D. A. Glassner, and P. R. Gruber, "Applications of life cycle assessment to NatureWorks$^{TM}$ polylactide (PLA) production", Polym. Degrad. Stab., 80, 403 (2003).   DOI
14 L. Jiang, J. Zhang, and M. P. Wolcott, "Comparison of polylactide/nano-sized calcium carbonate and polylactide/montmorillonite composites: Reinforcing effects and toughening mechanisms", Polymer, 48, 7632 (2007).   DOI
15 V. Krikorian, and D. J. Pochan, "Crystallization Behavior of Poly(l-lactic acid) Nanocomposites: Nucleation and Growth Probed by Infrared Spectroscopy", Macromolecules, 38, 6520 (2005).   DOI
16 S. Zhou, X. Zhang, X. Yu, J. Wang, J. Weng, X. Li, B. Feng, and M. Yin, "Hydrogen Bonding Interaction of Poly(d,l-Lactide)/hydroxyapatite Nanocomposites", Chem. Mater., 19, 247 (2007).   DOI
17 E. Bodros, I. Pillin, N. Montrelay, and C. Baley, "Could biopolymers reinforced by randomly scattered flax fibre be used in structural applications?", Compos. Sci. Technol., 67, 462 (2007).   DOI
18 T. J. chung, B. H. Lee, H. J. Lee, H. J. Kwon, W. B. Jang, H.-J. Kim, and Y. G. Eom, "Performance Evaluation of Bio-Composites Composed of Acetylated Kenaf Fibers and Poly(Lactic acid) (PLA)", Elast. Compos., 46, 195 (2011).
19 A. Marais, J. J. Kochumalayil, C. Nilsson, L. Fogelstrom, and E. K. Gamstedt, "Toward an alternative compatibilizer for PLA/cellulose composites: Grafting of xyloglucan with PLA", Carbohyd. Polym., 89, 1038 (2012).   DOI
20 A. N. Frone, S. Berlioz, J.-F. Chailan, and D. M. Panaitescu, "Morphology and thermal properties of PLA-cellulose nanofibers composites", Carbohyd. Polym., 91, 377 (2013).   DOI
21 L. Suryanegara, A. N. Nakagaito, and H. Yano, "The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites", Compos. Sci. Technol., 69, 1187 (2009).   DOI   ScienceOn
22 J.-S. Yeo and S.-H. Hwang, "Preparation and characteristics of polypropylene-graft-maleic anhydride anchored microfibriled cellulose: its composites with polypropylene", J. Adhes. Sci. Technol., 29, 185 (2015).   DOI
23 R. Agrawal, N. S. Saxena, K. B. Sharma, S. Thomas, and M. S. Sreekala, "Activation energy and crystallization kinetics of untreated and treated oil palm fibre reinforced phenol formaldehyde composites", Mater. Sci. Eng. A., 277, 77 (2000).   DOI
24 G. H. D. Tonoli, U. P. Rodrigues Filho, H. Savastano, J. Bras, M. N. Belgacem, and F. A. Lahr, "Cellulose modified fibres in cement based composites", Compos. Part A., 40, 2046 (2009).   DOI
25 S. Shibata, Y. Cao, and I. Fukumoto, "Lightweight Laminate Composites Made from Kenaf and Polypropylene Fibres", Polym. Testing, 25, 142 (2006).   DOI
26 K. Oksman, M. Skrifvars, and J. F. Selin, "Natural Fibres as Reinforcement in Polylactic Acid (PLA) Composites", Compos. Sci. Technol., 63, 1317 (2003).   DOI
27 A. K. Bledzki and J. Gassan, "Composites Reinforced with Cellulose Based Fibres", Prog. Polym. Sci., 24, 221 (1999).   DOI