Browse > Article
http://dx.doi.org/10.7473/EC.2012.47.3.223

Stress Relaxation of Poly(methyl acrylate)-Poly(acrylonitrile) Copolymers  

Kim, Nam-Jeong (Department of Chemistry, Sahmyook University)
Publication Information
Elastomers and Composites / v.47, no.3, 2012 , pp. 223-230 More about this Journal
Abstract
The rheological parameters of poly(methyl acrylate)-poly(acrylonitrile) copolymers were obtained by applying the experimental stress relaxation curves to the theoretical equation of the Eyring-Halsey non-Newtonian model. The experimentals of stress relaxation were carried out using the tensile tester with the solvent chamber. The determination of rheological parameters was performed from computer calculation. It was observed that the rheological parameters of these copolymer samples are directly related to the self diffusions and viscosities and activation energies of flow segments.
Keywords
poly(methyl acrylate)-poly(acrylonitrile) copolymers; stress relaxation; Eyring-Halsey non-Newtonian model; tensile tester; rheological parameters;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 S. P. Mishra and B. L. Deopula, "Tie chains and modulus of nylon 6 fibers", J. Appl. Polym. Sci., 27, 3211 (1982).   DOI   ScienceOn
2 A. J. Owen and R. Bonart, "Cooperative relaxation processes in polymers", polymer, 26, 1034 (1985).   DOI   ScienceOn
3 K. W. Chase and W. Goldsmith, "Mechanical and optical characterization of anelastic polymer at large strain rates and large strains", Experimental Mechanics, 17, 10 (1974).
4 V. B. Gupta and S. Kumar, "A model for nonlinear creep of textile fibers", Text. Res. J., 47, 647 (1977).   DOI
5 S. Kumar and V. B. Gupta, "A nonlinear viscoelastic model for textile fibers", Text. Res. J., 48, 429 (1978).   DOI
6 A. S. Krausz and H. Eyring, "Deformation Kinetics", John Wiley and sons, New York, 1975.
7 W. E. Morton and J. W. S. Hearles, "Physical Properties of Textile Fibers", Heinemann, London, 1975.
8 S. Siengchin and J. K. Kocsis, "Mechanical and stress relaxation behavior of santroprene thermoplastic elastomer/boehmit alumina nanocomposites produced by water-mediated and direct melt compounding", Composites Part A: Applied Science and Manufacturing, 41, 768 (2010).   DOI   ScienceOn
9 P. H. DeHoff and K. J. Anusavice, "Shear stress relaxation of dental ceramics determined from creep behavior", Dental Materials, 20, 717 (2004).   DOI   ScienceOn
10 R. K. June, S. Ly, and D. P. Fyhrie, "Cartilage stress relaxation proceeds slower at higher compressive strains", Archives of Biochemistry and Biophysics, 483, 75 (2009).   DOI   ScienceOn
11 C. Machiraju, A. V. Phan, A. W. Pearsall, and S. Madanagopal, "Viscoelastic studies of human subscapularis tendon: Relaxation test and a Wiechert model", Computer Methods and Programs in Biomedicine, 83, 29 (2006).   DOI   ScienceOn
12 N. J. Kim, "Stress relaxation and nonlinear viscoelastic model of PAN-PVC copolymer", Elastomers and Composites, 45, 250 (2010).
13 N. J. Kim, E. R. Kim, and S. J. Hahn, "Solvent effect on stress relaxation of PET filament fibers and self diffusion of crystallites", Bull. Korean Chem. Soc., 12, 468 (1991).   과학기술학회마을
14 T. Kunugi, Y. Isobe, K. Kimura, Y. Asanuma, and M. Hashimoto, "Stress relaxation of oriented nylon 6 fibers", J. Appl. Polym. Sci., 24, 923 (1979).   DOI   ScienceOn
15 V. P. Privalko, S. M. Ponomarenko, E. G. Privalko, F. Schon, and W. Gronski, "Thermoelasticity and stress relaxation behavior of polychloroprene/organoclay nanocomposites", European Polymer Journal, 41, 3042 (2005).   DOI   ScienceOn
16 M. Patel, P. R. Morrell, and J. J. Murphy, Continuous and intermittent stress relaxation studies on foamed polysiloxane rubber", Polymer Degradation and Stability, 87, 201 (2005).   DOI   ScienceOn
17 Z. H. Stachurski, "Micromechanics of stress relaxation in amorphous glassy PMMA. Part I. Molecular model for anelastic behaviour", Polymer, 43, 7419 (2002).   DOI   ScienceOn
18 M. T. Abadi, "Micromechanical analysis of stress relaxation response of fiber-reinforced polymers", Composites Science and Technology, 69, 1286 (2009).   DOI   ScienceOn
19 S. A. Baeurle, A. Hotta, and A. A. Gusev, "A new semi-phenomenological approach to predict the stress relaxation behavior of thermoplastic elastomers", Polymer, 46, 4344 (2005).   DOI   ScienceOn
20 H. H. Le, S. Ilisch, and H. J. Radusch, "Characterization of effect of the filler dispersion on the stress relaxation behavior of carbon black filled ruber composites", Polymer, 50, 2294 (2009).   DOI   ScienceOn