Browse > Article

Filler-Elastomer Interactions. 6. Influence of Oxygen Plasma Treatment on Surface Properties of Carbon Blacks  

Cho, Ki-Sook (Advanced Materials Division, Korea Research Institute of Chmical Technology)
Zoborski, M. (Institute of Polymers, Technical University of Lodz)
Slusarski, L. (Institute of Polymers, Technical University of Lodz)
Park, Soo-Jin (Advanced Materials Division, Korea Research Institute of Chmical Technology)
Publication Information
Elastomers and Composites / v.37, no.2, 2002 , pp. 99-106 More about this Journal
Abstract
In this work, the surface properties and mechanical interfacial properties of the carbon blacks treated by oxygen plasma were investigated. The surface properties of carbon black by oxidation process of oxygen plasma were studied in acid-base surface value, zeta potential, and X-ray photoelectron spectroscopy (XPS). And their mechanical interfacial properties of the carbon black/rubber composites were evaluated by the composite tearing energy ($G_{III}c$). As a result, it was found that the introduction rate of oxygen-containing polar functional groups, such as carboxyl, hydroxyl, lactone, and carbonyl groups, onto the carbon black surfaces was increased by increasing the plasma treatment time. It revealed that the polar rubber, such as acrylonitrile butadiene rubber (NBR), showed relatively a high degree of interaction with oxygen-containing functional groups of the carbon black surfaces, resulting in improving the tearing energy ($G_{III}c$) of the carbon black/acrlyonitrile butadiene rubber composites.
Keywords
carbon black; oxygen plasma; surface properties; mechanical interfacial properties;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. R. G. Furtado, J. L. Lebalnce, and R C. R. Nunes, Eur. Polym. J., 36, 1717, (2000)
2 S. Bandyopadhyay, P. P. De, D. K. Tripathy, and S. K. De, Polymer, 37, 353 (1996)
3 B. Champman, 'Glow Discharge Processes', John Wiley & Sons, New York, (1980)
4 A. Grill, 'Cold Plasma in Materials Fabrication: From Fundamentals to Applications', IEEE; ISBN: 0708347145, (1994)
5 L. E. Cascarini De Torre, E. J. Bottani, A. Martinez-Alonso, A. Cuesta, A. B. Garcia, and J. M. D. Tascon, Carbon, 36, 277 (1998)
6 S. J. Park and J. S. Kim, Carbon.; 39, 2011 (2001)
7 A. A. Griffith, Phil. Trans. R. Soc. London, A. 221, 163 (1920)
8 B. R. Ware and W. H Flygare, J. Colloid Interface Sci., 39, 670 (1972)
9 J. B. Donnet, W. D. Wang, and A. Vidal, Carbon, 32, 199 (1994)
10 H. P. Boehm, Adv. Catal., 16, 179 (1966)
11 C. A. Frysz and D. D. L. Chung, Carbon, 35, 1111 (1997)
12 X. Li, and K. Horita, Carbon, 38, 133 (2000)
13 M. Nakahara, K. Ozawa, and Y. Sanada, J. Mater. Sci., 29, 1646 (1994)
14 M. E. Semaan, L. Nikiel, and C. A. Quarles, Carbon, 39, 1379 (2001)
15 S. J. Park and J. S. Kim, J. Colloid Interface Sci., 232, 311 (2000)
16 S. J. Park and J. S. Kim, J. Colloid Interface Sci., 244, 336 (2001)
17 J. H. Lin, H. W. Chen, K. T. Wang, and F. H. Liaw, J. Mater. Chem., 8, 2169 (1998)
18 T. Takada, M. Nakahara, H. Kumagai, and Y. Sanada, Carbon, 34, 1087 (1996)
19 J.M. Pena, N. S. Allen, M. Edge, C. M. Liauw, S. R. Hoon, B. Valange, and R. I. Cherry, Polym. Degrad. Stab., 71, 153 (2000)
20 S. J. Park and J. S. Kim, J. Colloid Interface Sci., 232, 311 (2000)
21 M. A. Lopes, F. J. Monteiro, J. D. Santos, A. P. Serro, and B. Saramago, J. Biomed. Mater. Res., 45, 370 (1999)