Browse > Article

자가-치유 고분자 제조 기술  

Lee, Sang-Hyeop (전북대학교 공과대학 화학공학부)
Lee, Dae-Su (전북대학교 공과대학 화학공학부)
Publication Information
Rubber Technology / v.20, no.3, 2019 , pp. 143-152 More about this Journal
Keywords
Citations & Related Records
연도 인용수 순위
  • Reference
1 REKONDO, Alaitz, et al. Catalyst-free room-temperature self-healing elastomers based on aromatic disulfide metathesis. Materials Horizons, 2014, 1.2:237-240.   DOI
2 CANADELL, Judit; GOOSSENS, Han; KLUMPERMAN, Bert. Self-healing materials based on disulfide links. Macromolecules, 2011, 44.8: 2536-2541.   DOI
3 MICHAL, Brian T., et al. Inherently photohealable and thermal shape-memory polydisulfide networks. ACS Macro Letters, 2013, 2.8: 694-699.   DOI
4 IMBERNON, Lucie; NORVEZ, Sophie; LEIBLER, Ludwik. Stress relaxation and self-adhesion of rubbers with exchangeable links. Macromolecules, 2016, 49.6: 2172-2178.   DOI
5 MONTARNAL, Damien, et al. Silica-like malleable materials from permanent organic networks. Science, 2011, 334.6058: 965-968.   DOI
6 CAPELOT, Mathieu, et al. Metal-catalyzed transesterification for healing and assembling of thermosets. Journal of the American Chemical Society, 2012, 134.18: 7664-7667.   DOI
7 CAPELOT, Mathieu, et al. Catalytic control of the vitrimer glass transition. ACS Macro Letters, 2012, 134.7: 789-792.   DOI
8 ALTUNA, F. I.; HOPPE, C. E.; WILLIAMS, R. J. J. Shape memory epoxy vitrimers based on DGEBA crosslinked with dicarboxylic acids and their blends with citric acid. RSC Advances, 2016, 6.91: 88647-88655.   DOI
9 LEGRAND, Aureelie; SOULIEE-ZIAKOVIC, Corinne. Silica-Epoxy vitrimer nanocomposites. Macromolecules, 2016, 49.16: 5893-5902.   DOI
10 LEI, Zhou Qiao, et al. Room-temperature self-healableand remoldable cross-linked polymer based onthe dynamic exchange of disulfide bonds. Chemistryof Materials, 2014, 26.6: 2038-2046.
11 YAN, Peiyao, et al. Multifunctional polyurethanevitrimers completely based on transcarbamoylation of carbamates: Thermally-induced dual-shape memory effect and self-welding. RSC Advances, 2017, 7.43: 26858-26866.   DOI
12 CHEN, Xi, et al. Reprocessable polyhydroxyurethane networks exhibiting full property recovery and concurrent associative and dissociative dynamic chemistry via transcarbamoylation and reversible cyclic carbonate aminolysis. Polymer Chemistry, 2017, 8.41: 6349-6355.   DOI
13 Market value forecast of polyurethane worldwide from 2016 to 2021 (in billion U.S. dollars), https://www.statista.com/statistics/720449/global-polyurethane-market-size-forecast/
14 DRY, Carolyn M.; SOTTOS, Nancy R. Passive smart self-repair in polymer matrix composite materials. In: Smart Structures and Materials 1993: Smart Materials. International Society for Optics and Photonics, 1993. p. 438-445.
15 DRY, Carolyn. Procedures developed for self-repair of polymer matrix composite materials. Composite structures, 1996, 35.3: 263-269.
16 WHITE, Scott R., et al. Autonomic healing of polymer composites. Nature, 2001, 409.6822: 794.   DOI
17 YANG, Jinglei, et al. Microencapsulation of isocyanates for self-healing polymers. Macromolecules, 2008, 41.24: 9650-9655.   DOI
18 DOHLER, D.; MICHAEL, Philipp; BINDER, Wolfgang. Principles of self-healing polymers. Self-Healing Polymers, 2013, 5-60.
19 THEN, Sonja, et al. Optimization of microencapsulation process for self-healing polymeric material. Sains Malaysiana, 2011, 40.7: 795-802.
20 CARUSO, Mary M., et al. Mechanically-induced chemical changes in polymeric materials. Chemical Reviews, 2009, 109.11: 5755-5798.   DOI
21 WU, Dong Yang; MEURE, Sam; SOLOMON, David. Self-healing polymeric materials: a review of recent developments. Progress in polymer science, 2008, 33.5: 479-522.   DOI
22 CHEN, Qiaomei, et al. Multi-stimuli responsive and multi-functional oligoaniline-modified vitrimers. Chemical science, 2017, 8.1: 724-733.   DOI
23 FORTMAN, David J., et al. Mechanically activated, catalyst-free polyhydroxyurethane vitrimers. Journal of the American Chemical Society, 2015, 137.44:14019-14022.   DOI
24 YAN, Xuzhou, et al. Stimuli-responsive supramolecular polymeric materials. Chemical Society Reviews, 2012, 41.18: 6042-6065.   DOI
25 BURATTINI, Stefano, et al. Healable polymeric materials: a tutorial review. Chemical Society Reviews, 2010, 39.6: 1973-1985.   DOI
26 BOIKO, Yuri M.; PRUD'HOMME, Robert E. Surface mobility and diffusion at interfaces of polystyrene in the vicinity of the glass transition. Journal of Polymer Science Part B: Polymer Physics, 1998, 36.4: 567-572.   DOI
27 BODE, Stefan, et al. Self‐healing polymer coatings based on crosslinked metallosupramolecular copolymers. Advanced Materials, 2013, 25.11: 1634-1638.   DOI
28 COMÍ, Marc, et al. Adaptive bio-based polyurethane elastomers engineered by ionic hydrogen bonding interactions. European Polymer Journal, 2017, 91: 408-419.   DOI
29 LIN, Yinlei; LI, Guangji. An intermolecular quadruple hydrogen-bonding strategy to fabricate selfhealing and highly deformable polyurethane hydrogels. Journal of Materials Chemistry B, 2014, 2.39: 6878-6885.   DOI
30 SONG, Yan, et al. Towards Dynamic but Supertough Healable Polymers through Biomimetic Hierarchical Hydrogen‐Bonding Interactions. Angewandte Chemie International Edition, 2018, 57.42: 13838-13842.   DOI
31 ENKE, Marcel, et al. Self-healing response in supramolecular polymers based on reversible zinc-histidine interactions. Polymer, 2015, 69: 274-282.   DOI
32 BURNWORTH, Mark, et al. Optically healable supramolecular polymers. Nature, 2011, 472.7343:334.
33 CHUJO, Yoshiki; SADA, Kazuki; SAEGUSA, Takeo. Reversible gelation of polyoxazoline by means of Diels-Alder reaction. Macromolecules, 1990, 23.10: 2636-2641.   DOI
34 DU, Pengfei, et al. Diels-Alder‐based crosslinked self‐healing polyurethane/urea from polymeric methylene diphenyl diisocyanate. Journal of Applied Polymer Science, 2014, 131.9.
35 HEO, Yunseon; SODANO, Henry A. Self‐healing polyurethanes with shape recovery. Advanced Functional Materials, 2014, 24.33: 5261-5268.   DOI
36 LI, Jinhui, et al. Thermally reversible and self‐healing novolac epoxy resins based on Diels-Alder chemistry. Journal of Applied Polymer Science, 2015, 132.26.
37 PETERSON, Amy M.; JENSEN, Robert E.; PALMESE, Giuseppe R. Reversibly Cross-Linked Polymer Gels as Healing Agents for Epoxy−Amine Thermosets. ACS applied materials & interfaces, 2009, 1.5: 992-995.   DOI
38 BLAISZIK, Benjamin J., et al. Self-healing polymers and composites. Annual review of materials research, 2010, 40: 179-211.   DOI
39 PATRICK, Jason F., et al. Polymers with autonomous life-cycle control. Nature, 2016, 540.7633:363.   DOI
40 CHEN, Xiangxu, et al. A thermally re-mendable cross-linked polymeric material. Science, 2002, 295.5560: 1698-1702.   DOI