Browse > Article
http://dx.doi.org/10.4218/etrij.2021-0136

Geometric calibration of a computed laminography system for high-magnification nondestructive test imaging  

Chae, Seung-Hoon (Medical Information Research Section, Electronics and Telecommunications Research Institute)
Son, Kihong (Medical Information Research Section, Electronics and Telecommunications Research Institute)
Lee, Sooyeul (Medical Information Research Section, Electronics and Telecommunications Research Institute)
Publication Information
ETRI Journal / v.44, no.5, 2022 , pp. 816-825 More about this Journal
Abstract
Nondestructive testing, which can monitor a product's interior without disassembly, is becoming increasingly essential for industrial inspection. Computed laminography (CL) is widely used in this application, as it can reconstruct a product, such as a printed circuit board, into a three-dimensional (3D) high-magnification image using X-rays. However, such high-magnification scanning environments can be affected by minute vibrations of the CL device, which can generate motion artifacts in the 3D reconstructed image. Since such vibrations are irregular, geometric corrections must be performed at every scan. In this paper, we propose a geometry calibration method that can correct the geometric information of CL scans based on the image without using geometry calibration phantoms. The proposed method compares the projection and digitally reconstructed radiography images to measure the geometric error. To validate the proposed method, we used both numerical phantom images at various magnifications and images obtained from real industrial CL equipment. The experiment results confirmed that sharpness and contrast-to-noise ratio (CNR) were improved.
Keywords
computed laminography; geometry calibration; high-magnification; motion artifacts; mutual information; nondestructive testing;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 W. E. I. Long, An industrial computed laminography imaging system, (Proc. Digital Industrial Radiology and Computed Tomography, Belgium, Ghent), 2015, pp. 22-25.
2 L. A. Feldkamp, L. C. Davis, and J. W. Kress, Practical conebeam algorithm, J. Opt. Soc. Am. A 1 (1984), no. 6, 612-619.   DOI
3 M. Yang, J. Zhu, Q. Liu, S. Duan, L. Liang, X. Li, W. Liu, and F. Meng, A practical method to calibrate the slant angle of central X-ray for laminography scanning system, NDT E Int. 64 (2014), 13-20.   DOI
4 M. Yang, Z. Li, L. Liang, X. Li, W. Liu, and Z. Gui, Automatic measurement of rotation center for laminography scanning system without dedicated phantoms, J. Electron. Imaging. 23 (2014), no. 5, 53018.   DOI
5 M. J. Daly, J. H. Siewerdsen, Y. B. Cho, D. A. Jaffray, and J. C. Irish, Geometric calibration of a mobile C-arm for intraoperative cone-beam CT, Med. Phys. 35 (2008), no. 5, 2124-2136.   DOI
6 N. Navab, A. Bani-Hashemi, M. S. Nadar, K. Wiesent, P. Durlak, T. Brunner, K. Barth, and R. Graumann, 3D reconstruction from projection matrices in a C-arm based 3D-angiography system, (Proc. International Conference on Medical Image Computing and Computer-Assisted Intervention, Cambridge, MA, USA), 1998, pp. 119-129.
7 K. Wiesent, K. Barth, N. Navab, P. Durlak, T. Brunner, O. Schuetz, and W. Seissler, Enhanced 3-D-reconstruction algorithm for C-arm systems suitable for interventional procedures, IEEE Trans. Med. Imaging 19 (2000), no. 5, 391-403.   DOI
8 R. R. Galigekere, K. Wiesent, and D. W. Holdsworth, Conebeam reprojection using projection-matrices, IEEE Trans. Med. Imaging 22 (2003), no. 10, 1202-1214.   DOI
9 F. Maes, D. Vandermeulen, and P. Suetens, Medical image registration using mutual information, Proc. IEEE 91 (2003), no. 10, 1699-1722.   DOI
10 M. Yang, J. Zhang, M. Yuan, X. Li, W. Liu, F. Meng, S. J. Song, and D. Wei, Calibration method of projection coordinate system for X-ray cone-beam laminography scanning system, NDT E Int. 52 (2012), 16-22.   DOI
11 S. T. Kim, D. H. Kim, and Y. M. Ro, Generation of conspicuityimproved synthetic image from digital breast tomosynthesis, (Proc. 19th International Conference on Digital Signal Processing, Hong Kong, China), 2014, pp. 395-399.
12 S. L. Fisher, D. J. Holmes, J. S. Jorgensen, P. Gajjar, J. Behnsen, W. R. B. Lionheart, and P. J. Withers, Laminography in the lab: Imaging planar objects using a conventional x-ray CT scanner, Meas. Sci. Technol. 30 (2019), no. 3, 35401.   DOI
13 L. De Chiffre, S. Carmignato, J. P. Kruth, R. Schmitt, and A. Weckenmann, Industrial applications of computed tomography, CIRP Ann. 63 (2014), no. 2, 655-677.   DOI
14 H. Deyhle, H. Towsyfyan, A. Biguri, M. Mavrogordato, R. Boardman, and T. Blumensath, Spatial resolution of a laboratory based X-ray cone-beam laminography scanning system for various trajectories, NDT E Int. 111 (2020). https://doi.org/10.1016/j.ndteint.2020.102222   DOI
15 J. M. Que, D. Q. Cao, W. Zhao, X. Tang, C. L. Sun, Y. F. Wang, C. F. Wei, R. J. Shi, L. Wei, Z. Q. Yu, and Y. L. Yan, Computed laminography and reconstruction algorithm, Chin. Phys. C. 36 (2012), no. 8, 777.   DOI
16 P. Aryan, S. Sampath, and H. Sohn, An overview of nondestructive testing methods for integrated circuit packaging inspection, Sensors 18 (2018), no. 7, 1981. https://doi.org/10.3390/s18071981   DOI
17 N. S. O'Brien, R. P. Boardman, I. Sinclair, and T. Blumensath, Recent advances in X-ray cone-beam computed laminography, J. Xray Sci. Technol. 24 (2016), no. 5, 691-707.
18 N. O'Brien, M. Mavrogordato, R. Boardman, I. Sinclair, S. Hawker, and T. Blumensath, Comparing cone beam laminographic system trajectories for composite NDT, Case Stud. Nondestruct. Test. Evaluation. 6 (2016), no. Part B, 56-61.   DOI
19 X. Pan, E. Y. Sidky, and M. Vannier, Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction? Inverse Probl. 25 (2009), no. 12, 1230009.
20 L. Yenumula, U. Kumar, and A. Dash, X-ray industrial computed laminography (ICL) simulation study of planar objects: optimization of laminographic angle, (Proc. Indian National Seminar & Exhibition on Nondestructive Evaluation NDE, Hyderabad, India), 2015.
21 Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, Image quality assessment: From error visibility to structural similarity, IEEE Trans. Image Process. 13 (2004), no. 4, 600-612.   DOI
22 B. G. Chae and S. Lee, Sparse-view CT image recovery using two-step iterative shrinkage-thresholding algorithm, ETRI J. 37 (2015), no. 6, 1251-1258.   DOI
23 M. J. Willemink and P. B. Noel, The evolution of image reconstruction for CT-from filtered back projection to artificial intelligence, Eur. Radiol. 29 (2019), no. 5, 2185-2195.   DOI
24 K. Yang, A. L. C. Kwan, D. W. F. Miller, and J. M. Boone, A geometric calibration method for cone beam CT systems, Med. Phys. 33 (2006), no. 6-1, 1695-1706.   DOI