Browse > Article
http://dx.doi.org/10.4218/etrij.2021-0187

A novel heuristic for handover priority in mobile heterogeneous networks based on a multimodule Takagi-Sugeno-Kang fuzzy system  

Zhang, Fuqi (College of Electrical Information, Changchun Guanghua University)
Xiao, Pingping (College of Electrical Information, Changchun Guanghua University)
Liu, Yujia (School of Electrical Engineering and Information Technology, Changchun Institute of Technology)
Publication Information
ETRI Journal / v.44, no.4, 2022 , pp. 560-572 More about this Journal
Abstract
H2RDC (heuristic handover based on RCC-DTSK-C), a heuristic algorithm based on a highly interpretable deep Takagi-Sugeno-Kang fuzzy classifier, is proposed for suppressing the mobile heterogeneous networks problem of frequent handover and handover ping-pong in the multibase-station scenario. This classifier uses a stack structure between subsystems to form a deep classifier before generating a base station (BS) priority sequence during the handover process, and adaptive handover hysteresis is calculated. Simulation results show that H2RDC allows user equipment to switch to the best antenna at the optimal time. In high-BS density load and mobility scenarios, the proposed algorithm's handover success rate is similar to those of classic algorithms such as best connection (BC), self tuning handover algorithm (STHA), and heuristic for handover based on AHP-TOPSIS-FUZZY (H2ATF). Moreover, the handover rate is 83% lower under H2RDC than under BC, whereas the handover ping-pong rate is 76% lower.
Keywords
handover; heterogeneous networks; interpretability; Takagi-Sugeno-Kang fuzzy system;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 M. Kamel, W. Hamouda, and A. Youssef, Ultra-dense networks: A survey, IEEE Commun. Surv. Tutor 18 (2016), no. 4, 2522-2545.   DOI
2 D. D. S. Souza, R. F. Vieira, M. C. D. R. Seruffo, and D. L. Cardoso, A novel heuristic for handover priority in mobile heterogeneous networks, IEEE Access 8 (2020), 4043-4050. https://doi.org/10.1109/ACCESS.2019.2963069   DOI
3 M. A. Adedoyin and O. E. Falowo, Combination of ultra-dense networks and other 5G enabling technologies: A survey, IEEE Access 8 (2020), 22893-22932. https://doi.org/10.1109/ACCESS.2020.2969980   DOI
4 L. A. Zadeh, Outline of a new approach to the analysis of complex systems and decision processes, IEEE Trans. Syst. man, Cybernetics SMC-3 (1973), 28-44. https://doi.org/10.1109/TSMC.1973.5408575   DOI
5 A. Alhammadi, M. Roslee, M. Y. Alias, I. Shayea, S. Alraih, and K. S. Mohamed, Auto tuning self-optimization algorithm for mobility management in LTE-A and 5G HetNets, IEEE Access 8 (2019), 294-304. https://doi.org/10.1109/ACCESS.2019.2961186   DOI
6 T. Zhou, S. Wang, and F.-L. Chung, Multi-module TSK fuzzy system based on training space reconstruction, J. Softw. 31 (2020), no. 11, 3506-3518.
7 X. Ma, S. Hu, D. Zhou, Y. Zhou, and N. Lu, Adaptive deployment of UAV-aided networks based on hybrid deep reinforcement learning, (IEEE 92nd Vehicular Technology Conference, Victoria, Canada), Nov. 2020. https://doi.org/10.1109/VTC2020-Fall49728.2020.9348512   DOI
8 Y. Chen, K. Niu, and Z. Wang, Adaptive handover algorithm for LTE-R system in high-speed railway scenario, IEEE Access 9 (2021), 59540-59547. https://doi.org/10.1109/ACCESS.2021.3073917   DOI
9 A. Ramirez-Arroyo, A. Ramirez-Arroyo, P. H. Zapata-Cano, A. Palomares-Caballero, J. Carmona-Murillo, F. Luna-Valero, and J. F. Valenzuela-Valdes, Multilayer network optimization for 5G & 6G, IEEE Access 8 (2020), 204295-204308. https://doi.org/10.1109/ACCESS.2020.3036744   DOI
10 H. Xu, X. Wang, W. Liu, and W. Shao, An uplink based mobility management scheme for 5G wireless network, (IEEE International Conference on Communications, Shanghai, China), May 2019. https://doi.org/10.1109/ICC.2019.8761760   DOI
11 K. L. Tsai, H.-Y. Liu, and Y.-W. Liu, Using fuzzy logic to reduce ping-pong handover effects in LTEN, Soft Computing 20 (2019), no. 5, 1683-1694.   DOI
12 K. C. Silva, K. da Costa Silva, Z. Becvar, and C. R. L. Frances, Adaptive hysteresis margin based on fuzzy logic for handover in mobile networks with dense small cells, IEEE Access 6 (2018), 17178-17189. https://doi.org/10.1109/ACCESS.2018.2811047   DOI
13 H. Yu, Y. Ma, and J. Yu, Network selection algorithm for multiservice multimode terminals in heterogeneous wireless networks, IEEE Access 7 (2019), 46240-46260. https://doi.org/10.1109/ACCESS.2019.2908764   DOI
14 F. T. A. Rabee, A. Al-Rimawi, and R. D. Gitlin, Channel capacity in a dynamic random waypoint mobility model, (9th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference, New York, NY, USA), Nov. 2018. https://doi.org/10.1109/UEMCON.2018.8796645   DOI
15 M. Kamel, W. Hamouda, and A. Youssef, Performance analysis of multiple associations in ultra-dense networks, IEEE Trans. Commun. 65 (2017), no. 9, 3818-3831.   DOI
16 S. Bhosale and R. Daruwala, Multi-criteria vertical handoff decision algorithm using hierarchy modeling and additive weighting in an integrated WLAN/WiMAX/UMTS environment-A case study, KSII T. Internet Inf. 8 (2014), no. 1, 35-57.
17 X. Zhang, R. Yu, Y. Zhang, Y. Gao, M. Im, L. G. Cuthbert, and W. Wang, Energy-efficient multimedia transmissions through base station cooperation over heterogeneous cellular networks exploiting user behavior, IEEE Wireless Commun. 21 (2014), no. 4, 54-61.   DOI
18 N. P. Singh and B. Singh, Vertical handoff decision in 4G wireless networks using multi attribute decision making approach, Wireless Networks 20 (2014), no. 5, 1203-1211.   DOI
19 A. Yardi and T. Bodas, A covert queueing problem with busy period statistic, IEEE Commun. Lett. 25 (2020), no. 3, 726-729. https://doi.org/10.1109/LCOMM.2020.3038191   DOI
20 M. Kassar, B. Kervella, and G. Pujolle, An overview of vertical handover decision strategies in heterogeneous wireless networks, Comput. Commun. 31 (2008), no. 10, 2607-2620.   DOI
21 3GPP, Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Mobility Enhancements in Heterogeneous Networks, 3GPP TR 36.839 v0.7.0. 2012.
22 H. Jang, J. Kim, W. Yoo, and J. M. Chung, URLLC mode optimal resource allocation to support HARQ in 5G wireless networks, IEEE Access 8 (2020), 126797-126804. https://doi.org/10.1109/ACCESS.2020.3007902   DOI
23 I. Shayea, M. Ergen, A. Azizan, M. Ismail, and Y. I. Daradkeh, Individualistic dynamic handover parameter self-optimization algorithm for 5G networks based on automatic weight function, IEEE Access 8 (2020), 214392-214412. https://doi.org/10.1109/ACCESS.2020.3037048   DOI