Browse > Article
http://dx.doi.org/10.4218/etrij.17.0116.0173

Design and Evaluation of Cascode GaN FET for Switching Power Conversion Systems  

Jung, Dong Yun (ICT Materials & Components Laboratory, ETRI)
Park, Youngrak (ICT Materials & Components Laboratory, ETRI)
Lee, Hyun Soo (ICT Materials & Components Laboratory, ETRI)
Jun, Chi Hoon (ICT Materials & Components Laboratory, ETRI)
Jang, Hyun Gyu (ICT Materials & Components Laboratory, ETRI)
Park, Junbo (ICT Materials & Components Laboratory, ETRI)
Kim, Minki (ICT Materials & Components Laboratory, ETRI)
Ko, Sang Choon (ICT Materials & Components Laboratory, ETRI)
Nam, Eun Soo (ICT Materials & Components Laboratory, ETRI)
Publication Information
ETRI Journal / v.39, no.1, 2017 , pp. 62-68 More about this Journal
Abstract
In this paper, we present the design and characterization analysis of a cascode GaN field-effect transistor (FET) for switching power conversion systems. To enable normally-off operation, a cascode GaN FET employs a low breakdown voltage (BV) enhancement-mode Si metal-oxide-semiconductor FET and a high-BV depletion-mode (D-mode) GaN FET. This paper demonstrates a normally-on D-mode GaN FET with high power density and high switching frequency, and presents a theoretical analysis of a hybrid cascode GaN FET design. A TO-254 packaged FET provides a drain current of 6.04 A at a drain voltage of 2 V, a BV of 520 V at a drain leakage current of $250{\mu}A$, and an on-resistance of $331m{\Omega}$. Finally, a boost converter is used to evaluate the performance of the cascode GaN FET in power conversion applications.
Keywords
Normally-on GaN FET; Cascode GaN FET; Boost converter;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 X. Huang et al., "Characterization and Enhancement of High-Voltage Cascode GaN Devices," IEEE Trans. Power Electron., vol. 62, no. 2, Feb. 2015, pp. 270-277.   DOI
2 W. Chang et al., "Design of Parasitic Inductance Reduction in GaN Cascode FET for High-Efficiency Operation," ETRI J., vol. 38, no. 1, Feb. 2016, pp. 133-140.   DOI
3 Z. Tang et al., "High-Voltage (600-V) Low-Leakage Low-Current-Collapse AlGaN/GaN HEMTs With $AlN/SiN_x$ Passivation," IEEE Electron Device Lett., vol. 34, no. 3, Mar. 2013, pp. 366-368.   DOI
4 A. Calmels, $V_{DS(on)}$, $V_{CE(sat)}$ Measurement in a High Voltage, High Frequency System, Application note APT0407, Nov. 2004. http://www.advancedpowertech.com
5 Y. Cai et al., "High-Performance Enhancement-Mode AlGaN/GaN HEMTs Using Fluoride-Based Plasma Treatment," IEEE Electron Device Lett., vol. 26, no. 7, July 2005, pp. 435-437.   DOI
6 L. Yuan, H. Chen, and K.J. Chen, "Normally-off AlGaN/GaN Metal-2DEG Tunnel-Junction Field-Effect Transistors," IEEE Electron Device Lett., vol. 32, no. 3, Mar. 2011, pp. 303-305.   DOI
7 Z. Tang et al., "600-V Normally Off SiNx/AlGaN/GaN MIS-HEMT with Large Gate Swing and Low Current Collapse," IEEE Electron Device Lett., vol. 34, no. 11, Nov. 2013, pp. 1373-1375.   DOI
8 Y. Park et al., "Normally-off GaN MIS-HEMT Using a Combination of Recessed-Gate Structure and CF4 Plasma Treatment," Phys. Status Solidi A, vol. 212, no. 5, May 2015, pp. 1170-1173.   DOI
9 X. Huang et al., "Analytical Loss Model of High Voltage GaN HEMT in Cascode Configuration," IEEE Trans. Power Electron., vol. 29, no. 5, May 2014, pp. 2208-2219.   DOI
10 S.W. Han et al., "AlGaN/GaN Metal-Oxide-Semiconductor Heterojunction Field-Effect Transistor Integrated With Clamp Circuit to Enable Normally-off Operation," IEEE Electron Device Lett., vol. 36, no. 6, June 2015, pp. 540-542.   DOI
11 X. Huang et al., "Evaluation and Application of 600 V GaN HEMT in Cascode Structure," IEEE Trans. Power Electron., vol. 29, no. 5, May 2014, pp. 2453-2461.   DOI
12 Z. Liu et al., "Package Parasitic Inductance Extraction and Simulation Model Development for the High-Voltage Cascode GaN HEMT," IEEE Trans. Power Electron., vol. 29, no. 4, Apr. 2014, pp. 1977-1985.   DOI
13 P.-C. Chou and S. Cheng, "Performance Characterization of Gallium Nitride HEMT Cascode Switch for Power Conditioning Application," Mater. Sci. Eng., B, vol. 198, Aug. 2015, pp. 43-50.   DOI
14 O. Ambacher et al., "Two-Dimensional Electron Gases Induced by Spontaneous and Piezoelectric Polarization Charges in N- and Ga-Face AlGaN/GaN Heterostructures," J. Appl. Phys., vol. 85, no. 6, Mar. 1999, pp. 3222-3233.   DOI
15 A. Fontsere et al., "A HfO2 Based 800 V/$300^{\circ}C$ Au-Free AlGaN/GaN-on-Si HEMT Technology," Int. Symp. Power Semicond. Devices ICs, Bruges, Belgium, June 3-7, 2012, pp. 37-40.
16 H.S. Lee et al., "0.34 VT AlGaN/GaN-on-Si Large Schottky Barrier Diode With Recessed Dual Anode Metal," IEEE Electron Device Lett., vol. 36, no. 11, Nov. 2015, pp. 1132-1134.   DOI
17 O. Hilt et al., "$70 m{\Omega}$/ 600 V Normally-off GaN Transistors on SiC and Si Substrates," IEEE Int. Symp. Power Semicond. Devices IC's, Hong Kong, May 10-14, 2015, pp. 237-240.
18 W. Saito et al., "Recessed-Gate Structure Approach Toward Normally Off High-Voltage AlGaN/GaN HEMT for Power Electronics Applications," IEEE Trans. Electron Devices, vol. 53, no. 2, Feb. 2006, pp. 356-362.   DOI