Browse > Article
http://dx.doi.org/10.4218/etrij.15.0114.0743

High-Performance Amorphous Multilayered ZnO-SnO2 Heterostructure Thin-Film Transistors: Fabrication and Characteristics  

Lee, Su-Jae (Information & Communications, Core Technology Research Laboratory, ETRI)
Hwang, Chi-Sun (Information & Communications, Core Technology Research Laboratory, ETRI)
Pi, Jae-Eun (Information & Communications, Core Technology Research Laboratory, ETRI)
Yang, Jong-Heon (Information & Communications, Core Technology Research Laboratory, ETRI)
Byun, Chun-Won (Information & Communications, Core Technology Research Laboratory, ETRI)
Chu, Hye Yong (Information & Communications, Core Technology Research Laboratory, ETRI)
Cho, Kyoung-Ik (Information & Communications, Core Technology Research Laboratory, ETRI)
Cho, Sung Haeng (Information & Communications, Core Technology Research Laboratory, ETRI)
Publication Information
ETRI Journal / v.37, no.6, 2015 , pp. 1135-1142 More about this Journal
Abstract
Multilayered ZnO-$SnO_2$ heterostructure thin films consisting of ZnO and $SnO_2$ layers are produced by alternating the pulsed laser ablation of ZnO and $SnO_2$ targets, and their structural and field-effect electronic transport properties are investigated as a function of the thickness of the ZnO and $SnO_2$ layers. The performance parameters of amorphous multilayered ZnO-$SnO_2$ heterostructure thin-film transistors (TFTs) are highly dependent on the thickness of the ZnO and $SnO_2$ layers. A highest electron mobility of $43cm^2/V{\cdot}s$, a low subthreshold swing of a 0.22 V/dec, a threshold voltage of 1 V, and a high drain current on-to-off ratio of $10^{10}$ are obtained for the amorphous multilayered ZnO(1.5nm)-$SnO_2$(1.5 nm) heterostructure TFTs, which is adequate for the operation of next-generation microelectronic devices. These results are presumed to be due to the unique electronic structure of amorphous multilayered ZnO-$SnO_2$ heterostructure film consisting of ZnO, $SnO_2$, and ZnO-$SnO_2$ interface layers.
Keywords
ZnO; $SnO_2$; oxide semiconductor; heterostructure; transistor;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 K. Nomura et al., "Room-Temperature Fabrication of Transparent Flexible Thin-Film Transistors Using Amorphous Oxide Semiconductors," Nature, vol. 432, Nov. 2004, pp. 488-492.   DOI
2 E. Fortunato et al., "Amorphous IZO TTFTs with Saturation Mobility Exceeding 100 $cm^2$/V.s," Physica Status Solidi (RRL), vol. 1, no. 1, Jan. 2007, pp. R34-R37.   DOI
3 H.Q. Chiang et al., "High Mobility Transparent Thin-Film Transistors with Amorphous Zinc Tin Oxide Channel Layer," Appl. Physics Lett., vol. 86, no. 1, 2005, pp. 013503-1-013503-3.   DOI
4 J. Heo, S.B. Kim, and R.G. Gordon, "Atomic Layer Deposited Zinc Tin Oxide Channel for Amorophous Oxide Thin Film Transistors," Appl. Physics Lett, vol. 101, 2012, pp. 113507-1-113507-5.   DOI
5 T. Kamiya, K. Nomura, and H. Sosono, "Present Status of Amorphous In-Ga-Zn-O Thin Film Transistors," Sci. Technol. Adv. Mater., vol. 11, no. 4, Sept. 2010, pp. 044305-1-044305-23.   DOI
6 W.S. Cheong, J. Park, and J.-H. Shin, "Effect of Oxygen Binding Energy on the Stability of Indium-Gallium-Zinc-Oxide Thin-Film Transistors," ETRI J., vol. 34, no. 6, Dec. 2012, pp. 966-969.   DOI
7 J.F. Wager, "Flat-Panel-Display Backplanes: LTPS or IGZO for AMLCDs or AMOLED Displays?" Inf. Display, vol. 30, no. 2, Mar. 2014, pp. 26-29.
8 A. Ohtomo and H.Y. Hwang, "A High-Mobility Electron Gas at the $LaAlO_3/SrTiO_3$ Heterointerface," Nature, vol. 427, Jan. 2004, pp. 423-426.   DOI
9 K. Koike et al., "Characteristics of a $Zn_{0.7}Mg_{0.3}O/ZnO$ Heterostructure Field-Effect Transistor Grown on Sapphire Substrate by Molecular-Beam Epitaxy," Appl. Physics Lett., vol. 87, no. 11, 2005, pp.112106-1-112106-3.   DOI
10 H. Tampo et al., "Polarization-Induced Two-Dimensional Electron Gases in ZnMgO/ZnO Heterostructures," Appl. Physics Lett., vol. 93, no. 20, 2008, pp. 202104-1-202104-3.   DOI
11 M. Nakano et al., "Electronic-Field Control of Two-Dimensional Electrons in Polymer-Gated-Oxide Semiconductor Heterostructures," Adv. Mater., vol. 22, no. 8, Apr. 2010, pp. 876-879.   DOI
12 H.A. Chin et al., "Two-Dimensional Electron Gases in Polycrystalline MgZnO/ZnO Heterostructures Grown by rf-Sputtering Processes," J. Appl. Physics, vol. 108, no. 5, 2010, pp. 054503-1-054503-4.   DOI
13 D.W. Greve, "Field Effect Devices and Application: Devices for Portable, Low Power, and Imaging Systems," 1st ed. Englewood Cliffs, NJ, USA: Prentice-Hall, 1998.
14 S.J. Lee et al., "Characterization of ZnO-$SnO_2$ Nanocomposite Thin Films Deposited by Pulsed Laser Ablation and their Field Effect Electronic Properties," Mater. Lett., vol. 122, May 2014, pp. 94-97.   DOI
15 W.B. Jackson, R.L. Hoffman, and G.S. Herman, "High-Performance Flexible Zinc Tin Oxide Field-Effect Transistors," J. Appl. Physics Lett., vol. 87, 2005, pp. 193503-1-193503-3.   DOI
16 M.G. McDowell, R.J. Sanderson, and I.G. Hill, "Combinational Study of Zinc Tin Oxide Thin-Film Transistors," J. Appl. Physics Lett., vol. 92, 2008, pp. 013502-1-013502-3.   DOI
17 R. Martins et al., "Role of Order and Disorder on the Electronic Performance of Oxide Semiconductor Thin Film Transistors," J. Appl. Physics, vol. 101, no. 4, 2007, pp. 044505-1-044505-7.   DOI
18 M.G. Yun et al., "Effects of Channel Thickness on Electrical Properties and Stability of Zinc Tin Oxide Thin-Film Transistors," J. Physics D: Appl. Physics, vol. 46, no. 47, Oct. 2013, pp. 475106-1-475106-5.   DOI