Browse > Article
http://dx.doi.org/10.15230/SCSK.2022.48.2.97

Anti-inflammatory and Anti-oxidative Activities for the Subcritical Water Extract of Camellia japonica Flowers  

Kim, Jung Eun (Department of Chemistry and Cosmetics, Jeju National University)
Ko, Ye Rin (Dongahn Co., Ltd.)
Boo, Suk Hwan (Dongahn Co., Ltd.)
Kang, Sung Hee (Dongahn Co., Ltd.)
Lee, Nam Ho (Department of Chemistry and Cosmetics, Jeju National University)
Publication Information
Journal of the Society of Cosmetic Scientists of Korea / v.48, no.2, 2022 , pp. 97-104 More about this Journal
Abstract
In this study, the anti-inflammatory and anti-oxidant efficacy of camellia subcritical water extracts (SWE, 135 ~ 180 ℃, 70 bar) was compared with 70% ethanol and hot water extracts. Among these extracts, the yield (57.9%) of the subcritical water extract, which was extracted under the condition of 180 ℃ and 70 bar was the highest, which increased the extraction yield by more than two times compared to the hot water extract (28.1%). The results of the nitric oxide (NO) production inhibition activity experiment using RAW 264.7 macrophages stimulated with lipopolysaccharide (LPS) showed that subcritical water extracts had superior effects in inhibiting the production of NO without cytotoxicity than 70% ethanol and hot water extracts. In addition, DPPH and ABTS+ radical scavenging activity experiments showed that the radical scavenging activity of subcritical water extract was similar to that of 70% ethanol and hot water extract. Moreover, the content of gallic acid was determined by HPLC and the quantity was about 1.62 mg/g for the SWE (165 ℃, 70 bar), which was the highest among all of the extracts. Based on these results, it is concluded the SWE of C. japonica flowers could be potentially applicable as anti-inflammatory and anti-oxidative ingredients in cosmetic formulations.
Keywords
Camellia japonica; subcritical water extract; anti-inflammation; anti-oxidation;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 D. S. Hah, C. H. Kim, G. S. Kim, E. G. Kim, and J. S. Kim, Antioxidative effects of traditional medicinal plants on lipid peroxidation, Korean J. Vet. Res., 45(3), 341 (2005).
2 X. Li, J. S. Han, Y. J. Park, S. J. Kang, J. S. Kim, K. Y. Nam, K. T. Lee, and J. E. Choi, Extracting conditions for promoting ginsenoside contents and taste of red ginseng water extract, Korean J. Crop Sci., 54(3), 287 (2009).
3 R. M. Smith, Extractions with superheated water, J. Chromatogr. A, 975(1), 31 (2002).   DOI
4 S. Y. Lee, E. J. Hwang, G. H. Kim, Y. B. Choi, C. Y. Lim, and S. M. Kim, Antifungal and antioxidant activities of extracts from leaves and flowers of Camellia japonica L., Korean J. Medicinal Crop Sci., 13(3 ), 93 (2005).
5 J. Y. Cho, H. J. Ryu, S. H. Ji, J. H. Moon, K. H. Jung, and K. H. Park, Phenolic compounds from the flower buds of Camellia japonica, Food Sci. Biotechnol., 18(3), 766 (2009).
6 R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, and C. Rice-Evans, Antixoidant activity applying an improved ABTS radical cation decolorization assay, Free Radic. Biol. Med., 26(9-10), 1231 (1999).   DOI
7 S. H. Park, J. E. Kim, and N. H. Lee, Isolation and evaluation of anti-oxidative constituents from the extract of Ficus erecta var. sieboldii King leaves, J. Soc. Cosmet. Sci. Korea, 42(4), 321 (2016).   DOI
8 A. P. Subramanian, A. A. John, M. V. Vellayyapan, A. Balaji, S. K. Jaganathan, E. Supriyanto, and M. Yusof, Gallic acid: Prospects and the molecular mechanisms of its anticancer activity, RSC Adv., 45(5), 35608 (2015).
9 N. K. Kim, M. H. Kim, C. S. Yoon, and S. W. Choi, Studies on the anti-inflammatory activity of Paulownia coreana Uyeki leaf extract. J. Soc. Cosmet. Sci. Korea, 32(4), 241 (2006).
10 Y. J. Ra, Y. W. Lee, J. D. Kim, and K. H. Row, Supercritical fluid extraction of catechin compounds from green tea, Korean J. Biotechnol. Bioeng., 16(4), 327 (2001).
11 S. M. Kim, E. J. Hwang, B. S. Pyo, and S. Y. Lee, Antioxidant and antimicrobial activities of the extracts from native Camellia japonica in Korea, Korean J. Plant. Res., 17(3), 314 (2004).
12 D. H. Kim, S. J. Park, J. Y. Jung, S. C. Kim, and S. H. Byun, Anti-inflammatory effects of the aqueous extract of Hwangnyeonhaedok-tang in LPS-activated macrophage cells, Kor. J. Herbol., 24(4), 39 (2009).
13 Y. F. Leung, P. O. S. Tam, W. S. Lee, D. S. C. Lam, H. F. Yam, B. J. Fan, C. C. Y. Tham, J. K. H. Chua, and C. P. Pang, The dual role of dexamethasone on anti-inflammation and outflow resistance demonstrated in cultured human trabecular meshwork cells, Mol. Vis., 9, 425 (2003).
14 S. H. Lee, J. I. Kang, and S. Y. Lee, Saponin composition and physico-chemical properties of Korean red ginseng extract as affected by extracting condition, J. Korean Soc. Food Sci. Nutr., 37(2), 256 (2008).   DOI
15 M. J. Piao, E. S. Yoo, Y. S. Koh, H. K. Kang, J. Kim, Y. J. Kim, H. H. Kang, and J. W. Hyun, Antioxidant effects of the ethanol extract from flower of Camellia japonica via scavenging of reactive oxygen species and induction of antioxidant enzymes, Int. J. Mol. Sci., 12(4), 2618 (2011).   DOI
16 Y. O. Seo and C. D. Kim, Fusion-complex activity of Camellia extract, Journal of Digital Convergence, 13(7), 431 (2015).   DOI
17 S. R. Ko, S. C. Kim, and K. J. Choi, Extract yields and saponin contents of red ginseng extracts prepared with various concentrations of ethanol, Kor. J. Pharmacogn., 23(1), 24 (1992).
18 H. H. Lee, J. Y. Cho, J. H. Moon, and K. H. Park, Isolation and identification of antioxidative phenolic acids and flavonoid glycosides from Camellia japonica flowers, Hort. Environ, Biotechnol., 52(3), 270 (2011).   DOI
19 J. Han, Master's Thesis Dissertation, Chung-Ang Univ., Seoul, Korea (2011).
20 A. S. Chauhan, P. S. Negi, and R. S. Ramteke, Antioxidant and antibacterial activities of aqueous extract of Seabuckthorn (Hippophae rhamnoides) seeds, Fitoterapia, 78(7-8), 590 (2007).   DOI
21 D. Rocksen, B. Lilliehook, R. Larsson, T. Johansson, and A. Bucht, Differential anti-inflammatory and anti oxidative effects of dexamethasone and N-acethylcysteine in endotoxininduced lung inflammation. Clin. Exp. Immunol., 122(2), 249 (2000).
22 J. E. Seo, E. S. Hwang, and G. H. Kim, Antioxidaitve and differentiation effects of Artemisia capillaris T. extract on hydrogen Peroxide-induced oxidative damage of MC3T3-E1 osteoblast cells, J. Korean Soc. Food Sci. Nutr., 40(11), 1532 (2011).   DOI
23 A. L. Jeon, J. E. Kim, and N. H. Lee, Whitening and anti-inflammatory constituents from the extract of Citrullus lanatus vines, J. Soc. Cosmet. Sci. Korea, 43(1), 53 (2017).   DOI
24 S. Nakamura, T. Moriura, S. Park, K. Fujimoto, T. Matsumoto, T. Ohta, H. Matsuda, and M. Yoshikawa, Melanogenesis inhibitory and fibroblast proliferation accelerating effects of noroleanane- and oleanane-type triterpene oligoglycosides from the flower buds of Camellia japonica, J. Nat. Prod., 75(8), 1425 (2012).   DOI
25 M. S. Blois, Antioxidant determination by the use of a stable free radical, Nature, 181, 1199 (1958).   DOI
26 M. L. McDaniel, G. Kwon, J. R. Hill, C. A. Marshall, and J. A. Corbett, Cytokines and nitric oxide in islet inflammation and diabetes, Proc. Soc. Exp. Biol. Med., 211(1), 24 (1996).   DOI
27 G. C. Yen, P. D. Duh, and H. L. Tasi, Antioxidant and pro-oxidant properties of ascorbic acid and gallic acid, Food Chemistry, 79(3), 307 (2002).   DOI
28 C. S. Seo, S. J. Jeong, S. R. Yoo, N. R. Lee, and H. K. Shin, Quantitative analysis and in vitro anti-inflammatory effects of gallic acid, ellagic acid, and quercetin from Radix Sanguisorbae, Pharmacogn. Mag., 12(46), 104 (2016).   DOI
29 M. K. Rasool, E. P. Sabina, S. R. Ramya, P. Preety, S. Patel, N. Mandal, P. P. Mishra, and J. Samuel, Hepatoprotective and antioxidant effects of gallic acid in paracetamol-induced liver damage in mice, J. Pharm. Pharmacol., 62(5), 638 (2010).   DOI
30 Y. J. Kim, Antimelanogenic and antioxidant properties of gallic acid, Biol. Pharm. Bull., 30(6), 1052 (2007).   DOI