Browse > Article
http://dx.doi.org/10.15230/SCSK.2020.46.1.73

Stress Hormone Cortisol Damages the Skin Barrier by Regulating Tight Junctions  

Lee, Sung Hoon (Basic Research & Innovation Division, Amorepacific Corporation R&D Center)
Son, Eui Dong (Basic Research & Innovation Division, Amorepacific Corporation R&D Center)
Choi, Eun-Jeong (Basic Research & Innovation Division, Amorepacific Corporation R&D Center)
Park, Won-Seok (Basic Research & Innovation Division, Amorepacific Corporation R&D Center)
Kim, Hyoung-June (Basic Research & Innovation Division, Amorepacific Corporation R&D Center)
Publication Information
Journal of the Society of Cosmetic Scientists of Korea / v.46, no.1, 2020 , pp. 73-80 More about this Journal
Abstract
Psychological stress can affect the physiological condition of the skin and cause various cutaneous disorders. The stress hormone cortisol is secreted by various skin cells such as fibroblasts, keratinocytes, and melanocytes. Tight junctions (TJs) are cell-cell junctions that form a barrier in the stratum granulosum of mammalian skin. TJs can also affect other skin barriers and are affected by chemical, microbial, or immunological barriers. Stress can cause damage to the skin barrier. Interestingly, to our knowledge, there has not been any research demonstrating the involvement of TJs in this process. In this study, cortisol was used to treat keratinocytes to determine its role in regulating TJs. We found that cortisol damaged skin barrier function by regulating the gene expression and structure of TJ components. Cortisol also inhibited the development of the granular layer in a skin equivalent model. These results suggest that cortisol affects the skin barrier function by the regulation of TJs.
Keywords
cortisol; tight junction; skin barrier;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. M. Sapolsky, L. M. Romero, and A. U. Munck, How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions, Endocr. Rev., 21(1), 55 (2000).   DOI
2 J. Zhou, J. A. Cidlowski, The human glucocorticoid receptor: one gene, multiple proteins and diverse responses, Steroids, 70(5-7), 407 (2005).   DOI
3 M. D enda, T. T suchiya, P . M. Elias, a nd K. R. Feingold, Stress alters cutaneous permeability barrier homeostasis, Am. J. Physiol. Regul. Integr. Comp. Physiol., 278(2), R367 (2000).   DOI
4 A. Garg, M. M. Chren, L. P. Sands, M. S. Matsui, K. D. Marenus, K. R. Feingold, and P. M. Elias, Psychological stress perturbs epidermal permeability barrier homeostasis: implications for the pathogenesis of stress-associated skin disorders, Arch Dermatol, 137(1), 53 (2001).
5 A. T. Slominski, P. R. Manna, and R. C. Tuckey, Cutaneous glucocorticosteroidogenesis: securing local homeostasis and the skin integrity, Exp. Dermatol., 23(6), 369 (2014).   DOI
6 G. Nikolakis and C. C. Zouboulis, Skin and glucocorticoids: effects of local skin glucocorticoid impairment on skin homeostasis, Exp. Dermatol., 23(11), 807 (2014).   DOI
7 N. Cirillo and S. S. Prime, Keratinocytes synthesize and activate cortisol, J Cell Biochem, 112(6), 1499 (2011).   DOI
8 A. Slominski, B. Zbytek, A. Szczesniewski, I. Semak, J. Kaminski, T. Sweatman, and J. Wortsman, CRH stimulation of corticosteroids production in melanocytes is mediated by ACTH, Am. J. Physiol. Endocrinol. Metab., 288(4), E701 (2005).   DOI
9 E. Orion and R. Wolf, Psychological stress and epidermal barrier function, Clin. Dermatol., 30(3), 280 (2012).   DOI
10 M. Terao, H. Murota, A. Kimura, A. Kato, A. Ishikawa, K. Igawa, E. Miyoshi, and I. Katayama, 11beta- Hydroxysteroid dehydrogenase-1 is a novel regulator of skin homeostasis and a candidate target for promoting tissue repair, PLoS One, 6(9), e25039 (2011).   DOI
11 A. Slominski, J. Wortsman, R. C. Tuckey, and R. Paus, Differential expression of HPA axis homolog in the skin, Mol. Cell. Endocrinol., 265-266, 143 (2007).   DOI
12 C. Skobowiat, J. C. Dowdy, R. M. Sayre, R. C. Tuckey, and A. Slominski, Cutaneous hypothalamicpituitary- adrenal axis homolog: regulation by ultraviolet radiation, Am. J. Physiol. Endocrinol. Metab., 301(3), E484 (2011).   DOI
13 C. Skobowiat, R. Nejati, L. Lu, R. W. Williams, and A. T. Slominski, Genetic variation of the cutaneous HPA axis: an analysis of UVB-induced differential responses, Gene, 530(1), 1 (2013).   DOI
14 C. Skobowiat, R. M. Sayre, J. C. Dowdy, and A. T. Slominski, Ultraviolet radiation regulates cortisol activity in a waveband-dependent manner in human skin ex vivo, Br. J. Dermatol., 168(3), 595 (2013).   DOI
15 M. Furuse, M. Hata, K. Furuse, Y. Yoshida, A. Haratake, Y. Sugitani, T. Noda, A. Kubo, and S. Tsukita, Claudin-based tight junctions are crucial for the mammalian epidermal barrier: a lesson from claudin-1-deficient mice, J. Cell. Biol., 156(6), 1099 (2002).   DOI
16 T. Yuki, A. Hachiya, A. Kusaka, P. Sriwiriyanont, M. O. Visscher, K. Morita, M. Muto, Y. Miyachi, Y. Sugiyama, and S. Inoue, Characterization of tight junctions and their disruption by UVB in human epidermis and cultured keratinocytes, J. Invest. Dermatol., 131(3), 744 (2011).   DOI
17 J. M. Brandner, Importance of tight junctions in relation to skin barrier function, Curr. Probl. Dermatol., 49, 27 (2016).   DOI
18 G. Zheng, G. Victor Fon, W. Meixner, A. Creekmore, Y. Zong, K. Dame M, J. Colacino, P. H. Dedhia, S. Hong, and J. W. Wiley, Chronic stress and intestinal barrier dys function: Glucocorticoid receptor and transcription repressor HES1 regulate tight junction protein Claudin-1 promoter, Sci Rep, 7(1), 4502 (2017).   DOI
19 Y. Zong, S. Zhu, S. Zhang, G. Zheng, J. W. Wiley, and S. Hong, Chronic stress and intestinal permeability: Lubiprostone regulates glucocorticoid receptor mediated changes in colon epithelial tight junction proteins, barrier function, and visceral pain in the rodent and human, Neurogastroenterol. Motil., 31(2), e13477 (2018).   DOI
20 G. Zheng, S. P. Wu, Y. Hu, D. E. Smith, J. W. Wiley, and S. Hong, Corticosterone mediates stress-related increased intestinal permeability in aregion-specific manner, Neurogastroenterol. Motil., 25(2), e127 (2013).   DOI
21 R. Sultana, A. J. Mcbain, and C. A. O'neill, Straindependent augmentation of tight-junction barrier functionin human primary epidermal keratinocytes by Lactobacillus and Bifidobacterium lysates, Appl. Environ. Microbiol., 79(16), 4887 (2013).   DOI
22 I. H. Kuo, A. Carpenter-Mendini, T. Yoshida, L. Y. Mcgirt, A. I. Ivanov, K. C. Barnes, R. L. Gallo, A. W. Borkowski, K. Yamasaki, D. Y. Leung, S. N. Georas, A. De Benedetto, and L. A. Beck, Activation of epidermal toll-like receptor 2 enhances tight junction function: implications for atopic dermatitis and skin barrier repair, J. Invest. Dermatol., 133(4), 988 (2013).   DOI
23 L. Shen, E. D. Black, E. D. Witkowski, W. I. Lencer, V. Guerriero, E. E. Schneeberger, and J. R. Turner, Myosin light chain phosphorylation regulates barrier function by remodeling tight junction structure, J. Cell. Sci., 119(Pt10), 2095 (2006).   DOI
24 S. H. Lee, I. H. Bae, H. Choi, H. W. Choi, S. Oh, P. A. Marinho, D. J. Min, D. Y. Kim, T. R. Lee, C. S. Lee, and J. Lee, Ameliorating effect of dipotassium glycyrrhizinate on an IL-4-and IL-13-induced atopic dermatitis-like skin-equivalent model, Arch. Dermatol. Res, 311(2), 131 (2019).   DOI
25 L. Su, L. Shen, D. R. Clayburgh, S. C. Nalle, E. A. Sullivan, J. B. Meddings, C. Abraham, and J. R. Turner, Targeted epithelial tight junction dysfunction causes immune activation and contributes to development of experimental colitis, Gastroenterology, 136(2), 551 (2009).   DOI
26 A. Nusrat, J. R. Turner, and J. L. Madara, Molecular physiology and pathophysiology of tight junctions. IV. Regulation of tight junctions by extracellular stimuli: nutrients, cytokines, and immune cells, Am. J. Physiol. Gastrointest. Liver Physiol., 279(5), G851 (2000).   DOI