Browse > Article
http://dx.doi.org/10.15230/SCSK.2019.45.3.287

Studies on Antioxidant, Anti-inflammation and Whitening Activities of Hordeum vulgare L. Extracts and Their Fractions  

Park, Che Hwon (Department of Integrated Biosciences, College of Biomedical and Health Science, Konkuk University)
Park, Jang Ho (Department of Integrated Biosciences, College of Biomedical and Health Science, Konkuk University)
Min, Seon Young (Department of Integrated Biosciences, College of Biomedical and Health Science, Konkuk University)
Kim, Kyungmin (Jeju R&D Center, AMI Cosmetics Co., Ltd.)
Kim, Suyeong (Jeju R&D Center, AMI Cosmetics Co., Ltd.)
Park, Young Jin (Department of Integrated Biosciences, College of Biomedical and Health Science, Konkuk University)
Publication Information
Journal of the Society of Cosmetic Scientists of Korea / v.45, no.3, 2019 , pp. 287-297 More about this Journal
Abstract
This study was carried out to evaluate the antioxidant, anti-inflammation, and whitening effect of Hordeum vulgare L. extracts and their fractions. Total polyphenol and flavonoid contents in fractions were varied from 13.58 to 40.06 mg GAE/g and 7.67 ~ 13.67 mg CE/g, respectively. Among the three fractions(chloroform, hexane, and water), $400{\mu}g/mL$ of the chroloform fraction showed similar antioxidant activity to ascorbic acid ($30{\mu}M$) against the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical. The chloroform and hexane fractions inhibited the NO production of RAW 264.7 cells similar to quercetin ($15{\mu}M$) and the chloroform fraction of $100{\mu}g/mL$ significantly reduced IL-6, iNOS and COX2 gene expression. Additionally, the chloroform fraction inhibited ${\beta}$-hexosaminidase degranulation, IL-4, and IL-13 gene expression in RBL-2H3 cells. All of the fractions inhibited tyrosinase activity in a concentration-dependent manner, and the hexane fraction at $50{\mu}g/mL$ and the chloroform fraction at $100{\mu}g/mL$ significantly inhibited melanin production of B16F10 cells. These results indicated that H. vulgare L. can be used as an effective cosmetic ingredient having anti-inflammation and whitening activity.
Keywords
antioxidant; anti-inflammation; tyrosinase; Hordeum vulgare L.; whitening activity;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 S. Ito and K. Wakamatsu, Quantitative analysis of eumelanin and pheomelanin in humans, mice, and other animals: a comparative review, Pigment Cell Res., 16(5), 523 (2003).   DOI
2 Y. M. Yoon, S. H. Bae, S. K. An, Y. B. Choe, K. J. Ahn, and I. S. An, Effects of ultraviolet radiation on the skin and skin cell signaling pathways, Kor. J. Aesthet. Cosmetol., 11(3), 417 (2013).
3 J. W. Kim, H. I. Kim, J. H. Kim, O. C. Kwon, E. S. Son, C. S. Lee, and Y. J. Park, Effects of ganodermanondiol, a new melanogenesis inhibitor from the medicinal mushroom Ganoderma lucidum, Int J Mol Sci, 17(11), 1798 (2016).   DOI
4 Y. U. Jeong and Y. J. Park, Studies on antioxidant and whitening activities of Salix gracilistyla extracts, J. Soc. Cosmet. Sci. Korea, 44(3), 317 (2018).   DOI
5 M. Brenner and V. J. Hearing, The protective role of melanin against UV damage in human skin, Photochem. Photobiol., 84(3), 539 (2008).   DOI
6 S. Parvez, M. Kang, H. S. Chung, C. Cho, M. C. Hong, M. K. Shin, and H. Bae, Survey and mechanism of skin depigmenting and lightening agents, Phytother Res, 20(11), 921 (2006).   DOI
7 N. Baurin, E. Arnoult, T. Scior, Q. T. Do, and P. Bernard, Preliminary screening of some tropical plants for anti-tyrosinase activity, J Ethnophamacpl, 82(2-3), 155 (2002).   DOI
8 V. J. Hearing and K. Tsukamoto, Enzymatic control of pigmentation in mammals, FASEB J., 5(14), 2902 (1991).   DOI
9 G. Prota, The chemistry of melanins and melanogenesis, Prog Chem Org Nat Prod, 64, 93 (1995).
10 C. S. Eun, E. Y. Hwang, S. O. Lee, S. A. Yang, and M. H. Yu, Anti-oxidant and anti-inflammatory activities of barley sprout extract. J. Life Sci., 26(5), 537 (2016).   DOI
11 S. H. Jo, C. Y. Cho, K. S. Ha, E. J. Choi, Y. R. Kang, and Y. I. Kwon, The antioxidant and antimicrobial activities of extracts of selected barley and wheat inhabited in Korean Peninsula, J Korean Soc Food Sci Nutr, 42(7), 1003 (2013).   DOI
12 G. Nirupama, B. H. Mohammad, K. R. Dilip, and P. B. Nigel, A Review of extraction and analysis of bioactives in oat and barley and scope for use of novel food processing technologies, Molecules, 20(6), 10884 (2015).   DOI
13 S. J. Park, J. S. Lee, Y. H. Hoe, E. Y. Moon, and M. H. Kan, Physiology activity of barley leaf using different drying methods, J Korean Soc Food Sci Nutr, 37(12), 1627 (2008).   DOI
14 V. Dewanto, X. Wu, K. K. Adom, and R. H. Liu, Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity, J. Agric. Food Chem., 50(10), 3010 (2002).   DOI
15 M. S. Stankovic, N. Niciforovic, M. Topuzovic, and S. Solujic, Total phenolic content, flavonoid concentrations and antioxidant activity, of the whole plant and plant parts extracts from Teucrium montanum L. var. montanum, f. supinum (L.) Reichenb, Biotechnol. Biotechnol. Equip., 25(1), 2222 (2011).   DOI
16 K. Ishihara and T. Hirano, IL-6 in autoimmune disease and chronic inflammatory proliferative disease, Cytokine Growth Factor Rev., 13(4-5), 357 (2002).   DOI
17 N. Nakatani, Recent advances in the study on natural antioxidants, Nippon Shokuhin Kogyo Gakkaishi, 37, 569 (1990).   DOI
18 K. Nozaki, Current aspect and future condition of phytogenic antioxidants, Fragrance Journal, 6, 99 (1986).
19 F. Perez-Vizcaino, and J. Duarte, Flavonols and cardiovascular disease, Mol. Aspects Med., 31(6), 478 (2010).   DOI
20 A. Laupacis, P. A. Keown, R. A. Ulan, N. McKenzie, and C. R. Stiller, Cyclosporin A: a powerful immunosuppressant, Can Med Assoc J, 126(9), 1041 (1982).
21 J. M. Sforcin, J. T. Amaral, A. Jr. Fernandes, J. P. Sousa, and J. K. Bastos, Lemongrass effects on IL-1${\beta}$ and IL-6 production by macrophages, Nat. Prod. Res., 23(12), 1151 (2009).   DOI
22 K. H. Hanel, C. Cornelissen, B. Luscher, and J. Baron, Cytokines and the skin barrier, Int J Mol Sci, 14(4), 6720 (2013).   DOI
23 A. Slominski, D. J. Tobin, S. Shibahara, and J. Wortsman, Melanin pigmentation in mammalian skin and its hormonal regulation, Physiol. Rev., 84(4), 1155 (2004).   DOI
24 K. Maeda and M. Fukuda, Arbutin: mechanism of its depigmenting action in human melanocyte culture, J. Pharmacol. Exp. Ther., 276(2), 765 (1995).
25 Y. Cao and R. Cao, Angiogenesis inhibited by drinking tea, Nature, 398(6726), 381 (1999).   DOI
26 H. L. Madsen and G. Bertelsen, Spices as antioxidants, Trends Food Sci. Technol., 6(8), 271 (1995).   DOI
27 F. Shahidi, P. K. Janitha, and P. D. Wanasundara, Phenolic antioxidants, Crit Rev Food Sci Nutr, 32(1), 67 (1992).   DOI
28 H. Sies, Oxidative stress: a concept in redox biology and medicine, Redox biol, 4, 180 (2015).   DOI
29 T. Xie, S. Song, S. Li, L. Ouyang, L. Xia, and J. Huang, Review of natural product databases, Cell Prolif., 48(4), 398 (2015).   DOI
30 E. C. Milam and A. R. Evan, An approach to cosmeceuticals, J Drugs Dermatol, 15(4), 452 (2016).
31 G. Bjorklund and S. Chirumbolo, Role of oxidative stress and antioxidants in daily nutrition and human health, Nutrition, 33, 311 (2017).   DOI
32 N. Y. Yoon, H. Y. Wang, M. Jun, M. Jung, D. H. Kim, N. R. Lee, K.-W. Hong, S. J. Seo, E. Choi, J. Lee, H. Lee, and E. H. Choi, Simultaneous detection of barrier-and immune-related gene variations in patients with atopic dermatitis by reverse blot hybridization assay, Clin. Exp. Dermatol., 43(4), 430 (2018).   DOI
33 E. D. Lephart, Skin aging and oxidative stress: Equol's anti-aging effects via biochemical and molecular mechanisms, Ageing Res. Rev., 31, 36 (2016).   DOI
34 K. Kandola, A. Bowman, and M. A. Birch-Machin, Oxidative stress-a key emerging impact factor in health, ageing, lifestyle and aesthetics, Int J Cosmet Sci, 37(S2), 1 (2015).
35 R. Medzhitov, Origin and physiological roles of inflammation, Nature, 454(7203), 428 (2008).   DOI
36 C. N. Palmer, A. D. Irvine, A. Terron-Kwiatkowski, Y. Zhao, H. Liao, S. P. Lee, D. R. Goudie, A. Sandilands, L. E. Campbell, F. J. Smith, G. M. O'Regan, R. M. Watson, J. E. Cecil, S. J. Bale, J. G. Compton, J. J. DiGiovanna, P. Fleckman, S. Lewis-Jones, G. Arseculeratne, A. Sergeant, C. S. Munro, B. El Houate, K. McElreavey, L. B. Halkjaer, H. Bisgaard, S. Mukhopadhyay, and W. H. McLean, Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis, Nat. Genet., 38(4), 441 (2006).   DOI
37 E. H. Choi and N. Y. Yoon, Pathogenesis of atopic dermatitis, J. Korean Med. Assoc., 57(3), 218 (2014).   DOI
38 H. Matsuda, T. Morikawa, H. Managi, and M. Yoshikawa, Antiallergic principles from Alpinia galanga: structural requirements of phenylpropanoids for inhibition of degranulation and release of TNF-${\alpha}$ and IL-4 in RBL-2H3 cells, Bioorg. Med. Chem. Lett., 13(19), 3197 (2004).   DOI
39 M. Neis, B. Peters, A. Dreuw, J. Wenzel, T. Bieber, C. Mauch, T. Krieg, S. Stanzel, P. Heinrich, and H. Merk, Enhanced expression levels of IL-31 correlate with IL-4 and IL-13 in atopic and allergic contact dermatitis, J. Allergy Clin. Immunol., 118(4), 930 (2006).   DOI
40 S. Tewtraku and A. Itharat, Anti-allergic substances from the rhizomes of Dioscorea membranacea. Bioorg. Med. Chem., 14(24), 8707 (2006).   DOI
41 U. Panich, T. Onkoksoong, K. Kongtaphan, K. Kasetsinsombat, P. Akarasereenont, and A. Wongkajornsilp, Inhibition of UVA-mediated melanogenesis by ascorbic acid through modulation of antioxidant defense and nitric oxide system, Arch. Pharm. Res., 34(5), 811 (2011).   DOI
42 A. Chukaew, C. Pongimanont, C. Karalai, and S. Tewtrakul, Potential anti-allergic acridone alkaloids from the roots of Atalantia monophylla. Phytochemistry, 69(14), 2616 (2008).   DOI
43 S. Pillai, C. Oresajo, and J. Hayward, Ultraviolet radiation and skin aging: roles of reactive oxygen species, inflammation and protease activation, and strategies for prevention of inflammation-induced matrix degradation-a review, Int J Cosmet Sci, 27(1), 17 (2005).   DOI