Browse > Article
http://dx.doi.org/10.15230/SCSK.2019.45.2.161

Studies on Antioxidant Activity and In Vitro Inhibitory Activity of Tyrosinase and Collagenase in Artocarpus nitidus subsp. lingnaensis (Merr.) F.M. Jarrett using 4 Parameter Logistic  

Son, Kwang-Hee (Industrial Bio-material Research Center, Korea Research Institute of Bioscience & Biotechnology)
Kim, Young Kook (Industrial Bio-material Research Center, Korea Research Institute of Bioscience & Biotechnology)
Choi, Sangho (International Biological Material Research Center, KRIBB)
Zhang, Zhiyun (Institute of Botany, CAS)
Shin, Dong-Ha (R&D Center, InsectBiotech)
Lee, Jong Suk (Biocenter, GBSA)
Park, Ho-Yong (Industrial Bio-material Research Center, Korea Research Institute of Bioscience & Biotechnology)
Publication Information
Journal of the Society of Cosmetic Scientists of Korea / v.45, no.2, 2019 , pp. 161-173 More about this Journal
Abstract
In this study, the antioxidative and inhibitory activity of tyrosinase and collagenase for the solvent extract and silica column fractions of Artocarpus nitidus were evaluated. The activities were quantified using the 4 parameter logistic. LC/MS analysis showed that the major component of the fractions was polyphenol and the total polyphenol content of the extract was $48.1{\pm}2.6mg\;GAE/g$. The radical scavenging activities ($SC_{50}$) for 1,1-diphenyl-2-picrylhydrazyl of the extract, fraction-1 and fraction-2 were 16.7, 42.0 and $10.1{\mu}g/mL$, respectively. The value for fraction-2 was the closest to ascorbic acid ($1.5{\mu}g/mL$). The tyrosinase inhibitory activity of the extracts and the fractions showed $IC_{50}$ of 64.9, 0.9 and $1.2{\mu}g/mL$, respectively, and overall activity was higher than that of kojic acid ($7.4{\mu}g/mL$) and arbutin ($119.0{\mu}g/mL$). In the experiment by zebrafish embryo, the whitening activity of fraction-2 (27.5%) was higher than that of kojic acid (18.6%), and there was no adverse effect up to $500{\mu}g/mL$ of fraction-2. For the collagenase inhibitory activity, the samples showed $IC_{50}$ of 139.8, 20.6, and $16.8{\mu}g/mL$, respectively, which were competitive to 1, 10-Phenanthroline ($55.4{\mu}g/mL$). The extract and fraction-2 showed $IC_{50}$ of 61.8 and $67.1{\mu}g/mL$ for elastase. These results suggest that A. nitidus extract can be used as a cosmetic material useful for antioxidant, whitening, and prevention of skin aging without adverse effects.
Keywords
antioxidant; polyphenol; collagenase inhibition; tyrosinase inhibition; Artocarpus nitidus;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 H. Ti, P. Wu, L. Lin, and X. Wei, Stilbenes and flavonoids from Artocarpus nitidus subsp. lingnanensis, Fitoterapia, 82(4), 662 (2011).   DOI
2 T. Zhao, G. R. Yan, S. L. Pan, H. Y. Wang, and A. J. Hou, New isoprenylated 2-arylbenzofurans and pancreatic lipase inhibitory constituents from Artocarpus nitidus, Chem. Biodivers., 6(12), 2209 (2009).   DOI
3 Y. U. Jeong, H. Lee, H. Park, K. Kim, S. Kim, and Y. J. Park, Studies on antioxidant, anti-inflammation and tyrosinase inhibition inhibitory activities of Melissa officinalis extracts and their fractions, J. Cosmet. Sci. Korea, 44(4), 465 (2018).
4 G. Ren, P. Xue, X. Sun, and G. Zhao, Determination of the volatile and polyphenol constituents and the antimicrobial, antioxidant, and tyrosinase inhibitory activities of the bioactive compounds from the by-product of Rosa rugosa Thunb. var. plena Regal tea, BMC Complement Altern Med, 18(1), 307 (2018).   DOI
5 C. A. MacRae and R. T. Peterson, Zebrafish as tools for drug discovery, Nat Rev Drug Discov, 14(10), 721 (2015).   DOI
6 J. Wittenauer, S. Mackle, D. Submann, U. S. Weisz, and R. Carl, Inhibitory effects of polyphenols from grape pomace extract on collagenase and elastase activity, Fitoterapia, 101, 179 (2015).   DOI
7 J. H. Kim, J. C. Byun, A. K. R. Bandi, C. G. Hyun, and N. H. Lee, Compounds with elastase inhibition and free radical scavenging activities from Callistemon lanceolatus, J Med Plant Res, 3(11), 914 (2009).
8 Y. U. Jeong and Y. J. Park, Studies on antioxidant and whitening activities of Salix gracilistyla extracts, J. Cosmet. Sci. Korea, 44(3), 317 (2018).
9 H. S. Shin, M. Kim, J. Song, J. Lee, Y. Ha, Y. H. Jeon, J. W. Kim, Y. J. Lee, and S. N. Park, Evaluation of antioxidant, cytoprotective and antimicrobial properties of Polygoni multiflori Radix extract, fractions and its major constituent, J. Cosmet. Sci. Korea, 44(4), 407 (2018).
10 Z. D. Draelos, Cosmeceuticals: What's real, what's not, Dermatol Clin, 37(1), 107 (2017).   DOI
11 C. Colica, M. Milanovic, N. Milic, V. Aiello, A. D. Lorenzo, and L. Abenavoli, A systematic review on natural antioxidant properties of resveratrol, Nat Prod Commun, 13(9), 1195 (2018).
12 S. He and X. Yan, From resveratrol to its derivatives: New sources of natural antioxidant, Curr. Med. Chem., 20(8), 1005 (2013).   DOI
13 S. Pientaweeratch, V. Panapisal, and A. Tansirikongkol, Antioxidant, anti-collagenase and anti-elastase activity of Phyllanthus emblica, Manilkara zapota and silymarin: An in vitro comparative study for anti-aging applications, Pharm Biol, 54(9), 1865 (2016).   DOI
14 R. Widyowati, S. Sugimoto, Y. Yamano, Sukardiman, H. Otsuka, and K. Matsunami, New isolinariins C, D and E, flavonoid glycosides from Linaria japonica, Chem. Pharm. Bull., 64(5), 517 (2016).   DOI
15 K. Satyavani, S. Gurudeeban, and T. Ramanathan, Inhibitory effect of Excoecaria agallocha L. extracts on elastase and collagenase and identification of metabolites using HPLC-UV-MS techniques, Pharmaceutical Chemistry Journal, 51(11), 960 (2017).
16 L. Wang, X. Li, S. Zhang, W. Lu, S. Liao, X. Liu, L. Shan, X. Shen, H. Jiang, W. Zhang, J. Huang, and H. Li, Natural products as a gold mine for selective matrix metalloproteinases inhibitors, Bioorg. Med. Chem., 20(13), 4164 (2012).   DOI
17 O. Prakash, R. Kumar, A. Mishra, and R. Gupta, Artocarpus heterophyllus (Jackfruit): An overview, Pharmacogn Rev, 3(6), 353 (2009).
18 E. T. Arung, K. Shimizu, and R. Kondo, Artocarpus plants as a potential source of skin whitening agents, Nat Prod Commun, 6(9), 1397 (2011).
19 R. P. Verma and C. Hansch, Matrix metalloproteinases (MMPs): Chemical-biological functions and (Q)SARs, Bioorg. Med. Chem., 15(6), 2223 (2007).   DOI
20 M. Mandrone, A. Coqueiro, F. Poli, F. Antognoni, and Y. H. Choi, Identification of a collagenase-inhibiting flavonoid from Alchemilla vulgaris using NMR-based metabolomics, Planta Med., 84(12-13), 941 (2018).   DOI
21 R. Breinbauer, I. R. Vetter, and H. Waldmann, From protein domains to drug candidates - Natural products as guiding principles in the design and synthesis of compound libraries, Angew. Chem. Int. Ed. Engl., 41(16), 2879 (2002).
22 S. Wang, G. Dong, and C. Sheng, Structural simplification of natural products, Chem. Rev., 119(6), 4180 (2019).   DOI
23 A. L. Harvey, R. E. Ebel, and R. J. Quinn, The re-emergence of natural products for drug discovery in the genomics era, Nat Rev Drug Discov, 14(2), 111 (2015).   DOI
24 B. Shen, A new golden age of natural products drug discovery, Cell, 163(6), 1297 (2015).   DOI
25 J. Gu, Y. Gui, L. Chen, G. Yuan, H. Z Lu, and X. Xu, Use of natural products as chemical library for drug discovery and network pharmacology, PLoS ONE, 8(4), e62839 (2013).   DOI
26 B. M. Schmidt, D. M. Ribnicky, P. E. Lipsky, and L. Raskin, Revisiting the ancient concept of botanical therapeutics, Nat. Chem. Biol., 3(7), 360 (2007).   DOI
27 J. Gershenzon and N. Dudareva, The function of terpene natural products in the natural world, Nat. Chem. Biol., 3(7), 408 (2007).   DOI
28 M. Elkin and T. Newhouse, Computational chemistry strategies in natural product synthesis, Chem Soc Rev, 47(21), 7830 (2018).   DOI
29 M. L. W. Juhasz, M. K. Levin, and E. S. Marmur, The use of natural ingredients in innovative Korean cosmeceuticals, J Cosmet Dermatol, 17(3), 305 (2018).   DOI
30 A. I. C. Dorni, A. Amalraj, S. Gopi, K. Varma, and S. N. Anjana, Novel cosmeceuticals from plants - An industry guided review, J Appl Res Med Aromat Plants, 7, 1 (2017).   DOI
31 W. Zhao, E. Baldwin, and R. Cameron, A digital data interpretation method for hemagglutination inhibition assay by using a plate reader, Anal. Biochem., 571, 37 (2019).   DOI
32 P. Sondag, L. Zeng, B. Yu, R. Rousseau, B. Boulanger, H. Yang, and S. Novick, Effect of a statistical outlier in potency bioassays, Pharm Stat, 17(6), 701 (2018).   DOI
33 C. A. Holstein, M. Griffin, J. Hong, and P. D. Sampson, Statistical method for determining and comparing limits of detection of bioassays, Anal. Chem., 87(19), 9795 (2015).   DOI
34 A. Kammeyer and R. M. Luiten, Oxidation events and skin aging, Ageing Res. Rev., 21, 16 (2015).   DOI
35 J. A. Lewis II, J. C. DiNardo, and D. H. McDaniel, Oxidative stress, the damage accumulation theory of skin aging, and the role of antioxidants in the future of topical skin protection, Cosmetic Dermatology, 22(11), 576 (2009).
36 D. Stojiljkovic, D. Pavlovic, and I. Arsic, Oxidative stress, skin aging and antioxidant therapy, ACTA Facultatis Medicae Naissensis, 31(4), 207 (2014).   DOI
37 S. Dunaway, R. Odin, L. Zhou, L. Ji, Y. Zhang, and A. L. Kadekaro, Natural antioxidants: Multiple mechanisms to protect skin from solar radiation, Front Pharmacol, 9, 392 (2018).   DOI
38 B. Olas, Berry phenolic antioxidants - Implications for human health?, Front Pharmacol, 9, 78 (2018).   DOI
39 T. Pillaiyar, M. Manickam, and V. Namasivayam, Skin whitening agents: Medicinal chemistry perspective of tyrosinase inhibitors, J Enzyme Inhib Med Chem, 32(1), 403 (2017).   DOI
40 K. Sugimoto, T. Nishimura, K. Nomura, K. Sugimoto, and T. Kuriki, Inhibitory effects of ${\alpha}$-arbutin on melanin synthesis in cultured human melanoma cells and a three-dimensional human skin model, Biol. Pharm. Bull., 27(4), 510 (2004).   DOI
41 S. Zolghadri, A. Bahrami, M. T. H. Khan, J. M. Munoz, F. G. Molina, F. G. Canovas, and A. A. Saboury, A comprehensive review on tyrosinase inhibitors, J Enzyme Inhib Med Chem, 34(1), 279 (2019).   DOI
42 D. Sohretoglu, S. Sari, B. Barut, and A. Ozel, Tyrosinase inhibition by some flavonoids: inhibitory activity, mechanism by in vitro and in silico studies, Bioorg. Chem., 81, 168 (2018).   DOI
43 M. I. A. Rodriguez, L. G. R. Barroso, and M. L. Sanchez, Collagen: A review on its sources and potential cosmetic applications, J Cosmet Dermatol, 17(1), 20 (2018).   DOI
44 A. K. Ghimeray, U. S. Jung, H. Y. Lee, E. K. Ryu, and M. S. Chang, In vitro antioxidant, collagenase inhibition, and in vivo anti-wrinkle effects of combined formulation contatining Punica granatum, Ginkgo biloba, Ficus carica, and Morus alba fruits extract, Clin Cosmet Investig Dermatol, 8, 389 (2015).
45 T. S. Thring, P. Hili, and D. P. Naughton, Anti-collagenase, anti-elastase and anti-oxidant activities of extract from 21 plants, BMC Complement Altern Med, 9, 27 (2009).   DOI
46 W. Widowati, A. P. Rani, R. A. Hamzah, S. Arumwardana, E. Afifah, H. S. W. Kusuma, D. D. Rihibiha, H. Nufus, and A. Amalia, Antioxidant and antiaging assays of Hibiscus sabdariffa extract and its compounds, Natural Product Sciences, 23(3), 192 (2017).   DOI
47 H. Ti, L. Lin, W. Ding, and X. Wei, A new flavan-3-ol from Artocarpus nitidus subsp. lingnanensis, J Asian Nat Prod Res, 14(6), 555 (2012).   DOI
48 M. Bilal and H. M. N. Iqbal, An insight into toxicity and human-health-related adverse consequences of cosmeceuticals- A review, Sci. Total Environ., 670, 555 (2019).   DOI