Browse > Article
http://dx.doi.org/10.15230/SCSK.2019.45.1.49

A Study on the Whitening Effects of Pueraria thomsonii Extract and its Three Tectorigenin Derivatives  

Ahn, Young Je (Cosmetic Research & Development Center, LG Household & Healthcare Ltd.)
Chang, Yun Hee (Cosmetic Research & Development Center, LG Household & Healthcare Ltd.)
Lee, So Young (Cosmetic Research & Development Center, LG Household & Healthcare Ltd.)
Jin, Mu Hyun (Cosmetic Research & Development Center, LG Household & Healthcare Ltd.)
Publication Information
Journal of the Society of Cosmetic Scientists of Korea / v.45, no.1, 2019 , pp. 49-56 More about this Journal
Abstract
Pueraria thomsonii Benth. as a medicinal ingredient, has been traditionally used in Chinese medicine to treat fever, acute dysentery, diarrhea, diabetes, and cardiovascular disease. The effects of P. thomsonii flower on skin have not been reported yet. In this study, the whitening effect of P. thomsonii flower was verified using B16F1 melanoma cells and HS68 fibroblasts. P. thomsonii flower extract reduced melanin contents of B16F1 cells in a dose-dependent manner. To identify its active components, we analyzed P. thomsonii flower extract using high performance liquid chromatography (HPLC). As a result, we identified three major isoflavones of tectorigenin, tectoridin, and tectorigenin 7-O-xylosylglucoside. At a non-cytotoxic concentration, the three components also reduced melanin contents of B16F1 cells in a dose-dependent manner. The depigmentation effects were attributed to the reduced gene expression of tyrosinase and microphthalmia-associated transcription factor (MITF). In order to elucidate another depigmentation mechanism, their effects on DKK-1, a fibroblast-derived depigmentation factor, was determined in HS68 cells. As a result, P. thomsonii flower extracts, tectoridin and tectorigenin 7-O-xylosylglucoside, reduced DKK-1 gene expression, while tectorigenin increased DKK-1 gene expression in a dose-dependent manner. These results suggest that tectorigenin can be used as an effective whitening agent that inhibit melanin synthesis in melanocytes and promote the secretion of depigmentation factor from fibroblasts.
Keywords
Pueraria thomsonii Benth; tectorigenin; tectoridin; tectorigenin 7-O-xylosylglucoside; tyrosinase;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 B. A. Gilchrest and M. S. Eller, DNA photodamage stimulates melanogenesis and other photoprotective responses, J. Investig. Dermatol. Symp. Proc., 4(1), 35 (1999).
2 S. C. Taylor, Skin of color: biology, structure, function, and implications for dermatologic disease, J. Am. Acad. Dermatol., 46(2), S41 (2002).   DOI
3 U. Leiter and C. Garbe, Epidemiology of melanoma and nonmelanoma skin cancer-The role of sunlight, Adv. Exp. Med. Biol., 624, 89 (2008).   DOI
4 V. J. Hearing and M. Jimenez, Mammalian tyrosinase-The critical regulatory control point in melanocyte pigmentation, Int. J. Biochem., 19(12), 1141 (1987).   DOI
5 T. Kuzumaki, A. Matsuda, K. Wakamatsu, S. Ito, and K. Ishikawa, Eumelanin biosynthesis is regulated by coordinate expression of tyrosinase and tyrosinaserelated protein-1 genes, Exp. Cell Res., 207(1), 33 (1993).   DOI
6 del Marmol V and F. Beermann, Tyrosinase and related proteins in mammalian pigmentation, FEBS Lett., 381(3), 165 (1996).   DOI
7 J. Y. Lin and D. E. Fisher, Melanocyte biology and skin pigmentation, Nature, 445(7130), 843 (2007).   DOI
8 Q. Wang, X. L. Cheng, D. Y. Zhang, X. J. Gao, L. Zhou, X. Y. Qin, G. Y. Xie, K. Liu, Y. Qin, B. L. Liu, and M. J. Qin, Tectorigenin Attenuates Palmitate-Induced Endothelial Insulin Resistance via Targeting ROS-Associated Inflammation and IRS-1 Pathway, PLoS one, 8(6), e66417 (2013).   DOI
9 Y. Wang, C. Viennet, S. Robin, J. Y. Berthon, L. He, and P. Humbert, Precise role of dermal fibroblasts on melanocyte pigmentation, J. Dermatol. Sci., 88(2), 159 (2017).   DOI
10 Y. Yamaguchi, A. Morita, A. Maeda, and V. J. Hearing, Regulation of skin pigmentation and thickness by Dickkopf 1 (DKK1), J. Investig. Dermatol. Symp. Proc., 14(1), 73 (2009).
11 T. Kamiya, A. Takano, Y. Matsuzuka, N. Kusaba, M. Ikeguchi, K. Takagaki, and K. Kondo, Consumption of Pueraria flower extract reduces body mass index via a decrease in the visceral fat area in obese humans, Biosci. Biotechnol. Biochem., 76(8), 1511 (2012).   DOI
12 N. R. Han, S. Y. Nam, S. Hong, H. Y. Kim, P. D. Moon, H. J. Kim, H. Cho, B. Lee, H. M. Kim, and H. J. Jeong, Improvement effects of a mixed extract of flowers of Pueraria thomsonii Benth. and peels of Citrus unshiu Markovich on postmenopausal symptoms of ovariectomized mice, Biomed. Pharmacother., 103, 524 (2018).   DOI
13 A. Akhmetshina, K. Palumbo, C. Dees, C. Bergmann, P. Venalis, P. Zerr, A. Horn, T. Kireva, C. Beyer, J. Zwerina, H. Schneider, A. Sadowski, M. O. Riener, O.A. MacDougald, O. Distler, G. Schett, and J. H. Distler, Activation of canonical Wnt signalling is required for TGF-${\beta}$-mediated fibrosis, Nat Commun, 13(3), 735 (2012).
14 Y. Niiho, Y. Nakajima, T. Yamazaki, M. Okamoto, R. Tsuchihashi, M. Kodera, J. Kinjo, and T. Nohara, Simultaneous analysis of isoflavones and saponins in Pueraria flowers using HPLC coupled to an evaporative light scattering detector and isolation of a new isoflavone diglucoside. J Nat Med, 64(3), (2010).
15 J. Lu, Y. Xie, Y. Tan, J. Qu, H. Matsuda, M. Yoshikawa, and D. Yuan, Simultaneous determination of isoflavones, saponins and flavones in Flos Puerariae by ultra performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry, Chem. Pharm. Bull., 61(9), 941 (2013).   DOI
16 Y. P. Kim, M. Yamada, S. S. Lim, S. H. Lee, N. Ryu, K. H. Shin, and K. Ohuchi, Inhibition by tectorigenin and tectoridin of prostaglandin E2 production and cyclooxygenase-2 induction in rat peritoneal macrophages, Biochim. Biophys. Acta, 1438(3), 399 (1999).   DOI
17 Y. Guo, Y. H. Chen, Z. H. Cheng, H. N. Ou-Yang, C. Luo, and Z. L. Guo, Tectorigenin inhibits osteosarcoma cell migration through downregulation of matrix metalloproteinases in vitro, Anticancer Drugs, 27(6), 540 (2016).   DOI
18 J. Hosoi, E. Abe, T. Suda, and T. Kuroki, Regulation of melanin synthesis of B16 mouse melanoma cells by 1 alpha, 25-dihydroxyvitamin D3 and retinoic acid, Cancer Res., 45(4), 1474 (1985).
19 M. Y. Kim, Y. M. Yoo, l. M. Chung, J. H. Nam, and H. J. Park, Quantitative analysis of the isoflavone content in the flower and the root of Pueraria thunbergiana before and after acid hydrolysis, Natural Product Sciences, 14(3), 187 (2008).