Browse > Article
http://dx.doi.org/10.15230/SCSK.2019.45.1.19

Effect of Defatted Torreya nucifera Seed Extract on the Cross-linking of Advanced Glycation End Products to Collagen  

Son, Dahee (Biospectrum Life Science Institute)
Kim, Minkyung (Biospectrum Life Science Institute)
Park, Deokhoon (Biospectrum Life Science Institute)
Jung, Eunsun (Biospectrum Life Science Institute)
Publication Information
Journal of the Society of Cosmetic Scientists of Korea / v.45, no.1, 2019 , pp. 19-25 More about this Journal
Abstract
Advanced glycation end products (AGEs) are final products formed by glycation reaction between reducing sugars and proteins, lipids or nucleic acids. These AGEs are related to progress of skin aging. In this study, we evaluate anti-aging activity of Defatted Torreya nucifera seed extract (DTSE) through antioxidant, anti-glycation, anti-elastase and inhibitory and breaking activity on the cross-linking of AGEs to collagen assay. Results showed that DTSE contained polyphenols and flavonoids. The $IC_{50}$ values of 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activity were $16.4{\mu}g$ (Dried materials, DM)/mL and $16.7{\mu}g\;DM/mL$, respectively. DTSE also inhibited the formation of AGEs, elastase activity and cross-linking of AGEs to collagen as well as broke existing cross-linking of AGEs to collagen in a dose-dependent manner. Consequently, our findings suggest that DTSE could be useful as a cosmetic material with anti-aging activity.
Keywords
Torreya nucifera; AGEs; anti-aging; antioxidant; anti-glycation;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 S. Vasan, P. Foiles, and H. Founds, Therapeutic potential of breakers of advanced glycation end product-protein crosslinks, Arch. Biochem. Biophys., 419(1), 89 (2003).   DOI
2 K. M. Glynn, P. Anderson, D. J. Fast, J. Koedam, J. F. Rebhun, and R. A. Velliquette, Gromwell (Lithospermum erythrorhizon) root extract protects against glycation and related inflammatory and oxidative stress while offering UV absorption capability, Exp. Dermatol., 27(9), 1043 (2018).   DOI
3 S. Daniel, M. Reto, Z. Fred, Cosmetics: Collagen glycation and skin aging, Mibelle AG Cosmetics, Cosmetic and Toiletries Manufactrue Worldwide, 1, Switzerland (2001).
4 S. Yang, J. E. Litchfield, and J. W. Baynes, AGE-breakers cleave model compounds, but do not break Maillard crosslinks in skin and tail collagen from diabetic rats, Arch. Biochem. Biophys., 412(1), 42 (2003).   DOI
5 S. Vasan, P. G. Foiles, and H. W. Founds, Therapeutic potential of AGE inhibitors and breakers of AGE protein cross-links, Expert Opin Investig Drugs, 10(11), 1977 (2001).   DOI
6 J. W. L. Hartog, A. A. Voors, S. J. L. Bakker, A. J. Smit, and D. J. van Veldhuisen, Advanced glycation end-products (AGEs) and heart failure: pathophysiology and clinical implications, Eur. J. Heart Fail., 9(12), 1146 (2007).   DOI
7 M. Yu, M. Zeng, F. Qin, Z. He, and J. Chen, Physicochemical and functional properties of protein extracts from Torreya grandis seeds, Food Chem, 227(15), 453 (2017).   DOI
8 Y. P. Jang, S. R. Kim, and Y. C. Kim, Neuroprotective dibenzylbutyrolactone lignans of Torreya nucifera, Planta med., 67(5), 470 (2001).   DOI
9 S. P. Chen, M. Dong, K. Kita, Q. W. Shi, B. Cong, W. Z. Guo, S. Sugaya, K. Sugita, and N. Suzuki, Anti-proliferative and apoptosis-inducible activity of labdane and abietane diterpenoids from the pulp of Torreya nucifera in HeLa cells, Mol Med Rep, 3(4), 673 (2010).   DOI
10 H. S. Jeon, Y. S. Lee, and N. W. Kim, The antioxidative activities of Torreya nucifera seed extract, J Korean Soc Food Sci Nutr., 38(1), 1 (2009).   DOI
11 Z. Maksimovic, D. Malencic, and N. Kovacevic, Polyphenol contents and antioxidant activity of Maydis stigma extracts, Bioresour. Technol., 96(8), 873 (2005).   DOI
12 S. W. Shin, D. H. Son, M. K. Kim, S. J. Lee, K. B. Roh, D. H. Ryu, J. S. Lee, E. S. Jung, and D. H. Park, Ameliorating effect of Akebia quinata fruit extracts on skin aging induced by advanced glycation end products, Nutrients, 7(11), 9337 (2015).   DOI
13 D. C. Abeysinghe, X. Li, C. Sun, W. Zhang, C. Zhou, and K. Chen, Bioactive compounds and antioxidant capacities in different edible tissues of citrus fruit of four species, Food Chem., 104(4), 1338 (2007).   DOI
14 H. W. Kim, B. J. Kim, S. H. Lim, H. Y. Kim, S. Y. Lee, S. I. Cho, and Y. K. Kim, Anti-oxidative effects of Taraxaci Herba and protective effects on human HaCaT keratinocyte, Kor. J. Herbology., 24(3), 103 (2009).
15 K. J. Wang, Y. J. Zhang, and C. R. Yang, Antioxidant phenolic compounds from rhizomes of Polygonum paleaceum, J Ethnopharmacol., 96(3), 483 (2005).   DOI
16 R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, and C. Rice-Evans, Antioxidant activity applying an improved ABTS radical cation decolorization assay, Free Radic. Biol. Med., 26(9-10), 1231 (1999).   DOI
17 M. H. Nam, H. S. Lee, C. O. Hong, Y. C. Koo, Y. S. Mun, and K. W. Lee, Preventive effects of Rosa rugosa root extract on advanced glycation end product-induced endothelial dysfunction, KOREAN J. FOOD SCI. TECHNOL., 42(2), 210 (2010).
18 J. Y. Lee, J. G. Oh, J. S. Kim, and K. W. Lee, Effects of chebulic acid on advanced glycation endproducts-induced collagen cross-links, Biol. Pharm. Bull., 37(7), 1162 (2014).   DOI
19 I. Grzegorczyk-Karolak, K. Golab, J. Gburek, H. Wysokinska, and A. Matkowski, Inhibition of advanced glycation end-product formation and antioxidant activity by extracts and polyphenols from Scutellaria alpina L. and S. altissima L., Molecules, 21(6), 739 (2016).   DOI
20 T. Nakagawa, T. Yokozawa, K. Terasawa, S. Shu, and L. R. Juneja, Protective activity of green tea against free radical- and glucose-mediated protein damage, J. Agric. Food Chem., 50(8), 2418 (2002).   DOI
21 H. Ghelani, V. Razmovski-Naumovski, R. R. Pragada, and S. Nammi, (R)-alpha-Lipoic acid inhibits fructose-induced myoglobin fructation and the formation of advanced glycation end products (AGEs) in vitro, BMC Complement Altern Med, 18(1), 13 (2018).   DOI
22 M. Ichihashi, M. Yagi, K. Nomoto, and Y. Yonei, Glycation stress and photo-aging in skin, ANTI-AGING Med., 8(3), 23 (2011).   DOI
23 X. Xu, Y. Zheng, Y. Huang, J. Chen, Z. Gong, Y. Li, C. Lu, W. Lai, and Q. Xu, Cathepsin D contributes to the accumulation of advanced glycation end products during photoaging, J. Dermatol. Sci., 90(3), 263 (2018).   DOI
24 C. S. Kim, D. S. Jang, J. Kim, G. Y. Lee, Y. M. Lee, Y. S. Kim, and J. S. Kim, Inhibitory effects of the seeds of Cornus officinalis on AGEs formation and AGEs-induced protein cross-linking, Korean Journal of Pharmacognosy, 39(3), 249 (2008).
25 S. Takeshita, Y. Ishioka, M. Yagi, T. Uemura, M. Yamada, and Y. Yonei, The effects of water chestnut (Trapa bispinosa Roxb.) on the inhibition of glycometabolism and the improvement in postprandial blood glucose levels in humans, Glycative Stress Research, 3(3), 124 (2016).
26 O. K. Popoola, J. L. Marnewick, F. Rautenbach, F. Ameer, E. I. Iwuoha, and A. A. Hussein, Inhibition of oxidative stress and skin aging-related enzymes by prenylated chalcones and other flavonoids from Helichrysum teretifolium, Molecules, 20(4), 7143 (2015).   DOI
27 G. Ndlovu, G. Fouche, M. Tselanyane, W. Cordier, and V. Steenkamp, In vitro determination of the anti-aging potential of four southern African medicinal plants, BMC Complement. Altern. Med., 13(1), 304 (2013).   DOI
28 N. Ahmed, Advanced glycation endproducts-Role in pathology of diabetic complications, Diabetes Res. Clin. Pract., 67(1), 3 (2005).   DOI